
Karol Przystalski
Maciej J. Ogorzałek
Jan K. Argasiński
Wiesław Chmielnicki

Pattern 
Recognition 
Primer

Przystalski · Ogorzałek · 
Argasiński · Chm

ielnicki
Pattern Recognition Prim

er



Pattern Recognition Primer



Karol Przystalski · Maciej J. Ogorzałek · 
Jan K. Argasiński · Wiesław Chmielnicki 

Pattern Recognition Primer



Karol Przystalski 
Faculty of Physics, Astronomy and Applied 
Computer Science 
Institute of Applied Computer Science 
Jagiellonian University 
Krakow, Poland 

Jan K. Argasiński 
Faculty of Physics, Astronomy and Applied 
Computer Science 
Institute of Applied Computer Science 
Jagiellonian University 
Krakow, Poland 

Sano - Centre for Computational Medicine 
Krakow, Poland 

Maciej J. Ogorzałek 
Faculty of Physics, Astronomy and Applied 
Computer Science 
Institute of Applied Computer Science 
Jagiellonian University 
Krakow, Poland 

Wiesław Chmielnicki 
Faculty of Physics, Astronomy and Applied 
Computer Science 
Institute of Applied Computer Science 
Jagiellonian University 
Krakow, Poland 

ISBN 978-3-031-91815-5 ISBN 978-3-031-91816-2 (eBook) 
https://doi.org/10.1007/978-3-031-91816-2 

© Springer Nature Switzerland AG 2026 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-8572-1469
https://orcid.org/0000-0002-2992-718X
https://orcid.org/0000-0003-3314-269X
https://doi.org/10.1007/978-3-031-91816-2


Competing Interests The authors have no competing interests to declare that are 
relevant to the content of this manuscript.

v



Genesis of This Book 

The term Pattern Recognition is commonly used in different fields of science, engi-
neering, and a wide range of real-world applications. It is connected with machine 
learning and is based on artificial intelligence methods dedicated to discoveries of 
specific features—patterns in images, measurement data series, text files, biomedical 
data of any kind (ECG, EEG, imaging data, DNA, etc.), data from real observations 
in physical systems, and many others. 

Pattern Recognition Primer explores mostly used classification methods in intelli-
gible way. Each method is deeply explained, so even non-scientist readers are able to 
understand how it works. The book starts with an explanation of each basic statistical 
and mathematical terms that are used in following chapters. Every chapter contains 
easy to understand code samples. At the end of each chapter reader is able to do some 
exercises on his own to consolidate knowledge. There are solutions to the exercises 
provided in Appendix A so that the reader can compare results. Pattern Recognition 
Primer is a book intended for students, teachers and everyone who would like to 
understand how pattern recognition and machine learning works. 

The concept of the book started during the preparation of the Ph.D. thesis 
in machine learning by Karol Przystalski under the supervision of Prof. Maciej 
Ogorzałek—some ten years ago (2014–2015). The majority of text books avail-
able at that time offered only a few classification methods that were explained in 
a proper way. Many methods were typically briefly explained. In each textbook, 
different methods were explained. This book attempts to explain from top to bottom 
each method with all the needed details. Each method is further demonstrated in 
Python and additional exercises. This is something that is missing from many machine 
learning/pattern recognition books. 

The reason for such a situation is that most of them are dedicated to readers with 
some basic experience in this area. We want to introduce a book that is intended for 
readers with no experience in machine learning at all. 

Special and unique features of this book are: 

• an overview of commonly used classification methods in one place, 
• deep learning methods explained thoroughly,
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viii Genesis of This Book

• each classification method is explained in detail, 
• in this book, each statistical or mathematical aspect of each classification methods 

is explained in details. This makes the understanding of each method easier. 

What are the Benefits of This Book for the Reader? 

This book is suitable for wide range of data scientists, machine learning engineers, 
data analysts, academic teachers and especially for students. One of the advantages 
of this book is that the reader is able to get a detailed explanation of each commonly 
used classification method. Each method is presented in a easily to understand way by 
using simple comparison examples and additionally ready to use examples written in 
Python. Teachers can use it for their lectures/lessons and students to learn about clas-
sification methods. Each exercise have a solution that is described in the appendix to 
the book. Additionally, ready to use examples written in Python are shown. Teachers 
can use it for their lectures/lessons and students to learn about classification methods. 

Full development and many changes to this book took almost ten years to 
complete. This has been caused in large part by rapid changes observed in the 
domain, extremely fast development of the area of deep neural networks and AI 
and their booming applications. Unfortunately during the course of preparation of 
the manuscript we lost our extremely precious collaborator Dr. Wiesław Chemiel-
nicki. We miss his thoughtful comments and we wish to express our gratitude for 
his important contributions especially to the SVM chapters. We express also our 
gratitude to numerous colleagues and friends who gave us support. 

We thank also our students who followed courses in Signal processing, Biometrics, 
Machine learning and Neural networks and applications.
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Chapter 1 
Introduction to Pattern Recognition 

Pattern recognition has become a very popular buzzword over the last few years and 
is widely used in many commercial solutions. In [ 1], we can find many trends for 
2023. There are such trends as large language models, algorithms, deep learning, and 
so on. Most of these trends are more or less related to the topic of this book. What is 
important here is that for several years in each of these trend lists we can find many 
references to artificial intelligence and pattern recognition. We predict an even more 
comprehensive expansion of pattern recognition usage in the upcoming years. 

Before we go deeper into some mathematical aspects of pattern recognition in 
this chapter, we explain what pattern recognition and related terms are. A pattern 
can be described in many ways. In [ 2] it is described as “opposite of chaos; it is an 
entity, vaguely defined, that could be given a name”. The two best-known pattern 
recognition types are image recognition and speech recognition. We use them on a 
daily basis and sometimes don’t even know about them. Face detection in a camera 
is an example of image recognition. Siri, which is part of each iPhone device, con-
tains speech-recognition algorithms. These are only two examples of a large set of 
pattern recognition usage examples. A more detailed but not complete list of patterns 
recognition usage cases can be found in [ 3]. 

1.1 Frameworks and Libraries 

There are many free frameworks and libraries available. They are not new, as we have 
had various solutions for more than 20 years. Solutions such as scikit-learn [ 4] or  
Theano [ 5] were introduced in 2007 and 2008, but there are some libraries that were 
introduced even earlier [ 6, 7]. More and more solutions are introduced each year. So 
far, we have more than 100 solutions. Many of them have been introduced over the 
last ten years [ 8– 11]. A list with a short description is presented in Appendix C. In this 
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book, we decided not to use any framework or library unless it is totally necessary. We 
do not want to focus on any specific solution, as the goal is to learn how some methods 
work and not how to use scikit or any other solution. There are many books in which 
such solutions are explained in depth [ 5, 12– 21], but in most of them the methods 
are not explained well and the focus is more on library/framework explanation. In 
some cases, machine learning methods are treated as a black box with a superficial 
explanation of each. In our opinion, anyone who wants to start with machine learning 
should understand how the methods work inside in the first place, and then use a 
library/framework of one’s own choice. This should provide a better understanding 
of how to use a given method, set the right parameters, and finally choose the right 
method for a given problem. We use, whenever possible, a non-vectorized approach. 
It is slower but in our opinion easier to understand for beginners. The only exception is 
the neural network chapter, as the presented examples are more complex. Calculating 
it without using TensorFlow or other solutions that are polished for such cases would 
take too long. 

1.2 Terminology 

Artificial Intelligence is about algorithms that behave like intelligent human beings. 
Steven Spielberg’s A.I. (2001) movie presents robots that behave like humans. Almost 
like humans. Such robots as shown in the movie are still more fiction than science. 
There are some advanced robots such as Nadine [ 22], which looks and, in some 
situations, behaves like a human. Currently, the main part of the car building process 
is automated. Robots replaced humans in building cars by using algorithms that are 
usually developed to perform only one task. Such algorithms are not thought to learn 
to do new tasks on their own. It is hard to call them intelligent. Alan Turing is known 
to be the godfather of artificial intelligence. He proposed a test [ 23] called his name 
that can be used to distinguish whether an algorithm/method is artificial intelligence. 
It uses a chat interface to measure it. A human is having a conversation with someone 
else on the other end. He does not know if it is an algorithm or a human with whom 
he is talking. The algorithm passes the test if the human cannot distinguish whether 
he is talking to a human or not. Passing the test means that an algorithm can be 
considered as artificial intelligence.
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Fun fact: McCarthy coined the term AI in 1955 in connection with a proposed 
summer workshop at Dartmouth College, which many of the world’s lead-
ing thinkers in computing attended. In 1965, McCarthy became the found-
ing director of the Stanford Artificial Intelligence Laboratory (SAIL), where 
research was conducted into machine intelligence, graphical interactive com-
puting, and autonomous vehicles. a

a https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-
artificial-intelligence-dead-84. 

Machine learning is very often mistaken for pattern recognition, deep learning, or 
artificial intelligence. The reason why these terms are used as synonyms is that they 
all have a lot in common and are easily generalized, especially by anyone without 
knowledge of the differences. There are many definitions of machine learning. A short 
list of different definitions can be found in [24]. In fact, machine learning is the crucial 
part of the pattern recognition process. We will come back to this process later in this 
chapter. Machine learning is about algorithms that learn a new behavior based on 
given data. We are able to teach the algorithm so that it can predict the cases unknown 
before. The prediction process is also known as classification. There is a huge set 
of such algorithms, which are called classification methods. Implementations of 17 
families are analyzed in [ 25] 179 classification methods. The following chapters are 
about classification methods that are the main part of the pattern recognition process. 

Data science is about obtaining value from the data. Sometimes it is also called 
data analysis or data mining, but data science is a bit more general. Drew Conway 
during one of O’Reilly’s conferences proposed a diagram in which he focused on 
the skills that are needed to become a data scientist [ 26]. It comprises three different 
skills (see Fig. 1.1). First, to analyze the data, we need statistical and mathematical 
knowledge. Second, we need to have computer science skills as we need to know 
how to collect and proceed with the data. Third, we need to have domain expertise to 
know what we are analyzing. Data scientists are developers who extract knowledge 
or useful information that is not given strictly in large amounts of data. 

For a couple of years big data has become a popular term to describe solutions 
in which a large amount of data is processed in parallel. Especially big data-based 
learning has started to be widely used in recent years [ 27]. There are good examples 
in e-Commerce solutions like Amazon where all users actions are saved and analyzed 
for recommendation systems and further financial and inventory predictions. Google 
uses images to build methods that are used in Google Photos. BMW and Tesla 
use car sensors to build autonomous cars. There are also many other examples; for 
now, mostly larger companies use big data for prediction, but there have been many 
startups showing up in this area recently. The opposite of big data is small data. Most  
pattern recognition problems are still based on small data. It is difficult to distinguish 
between small and large data. The very loose difference is in parallel computation. 
A more detailed comparison between small and large data can be found in [ 28].

https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84
https://engineering.stanford.edu/news/stanfords-john-mccarthy-seminal-figure-artificial-intelligence-dead-84


4 1 Introduction to Pattern Recognition

Fig. 1.1 Data Science with references to other terms known as Data Science Venn Diagram. 
Source https://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram 

1.3 The Process 

To find a pattern on an image, we need to follow the process that is divided into a few 
steps. In the following process, we simplify it to a binary classification problem of 
iris cancer. This means that we can have a data set of images of malignant or benign 
cases. Each pattern recognition case is individual, but each consists of some steps 
that are the same in each case: 

1. Assemble data. In this step, we are collecting the data [ 29]. This part can be 
difficult in some cases, especially if we want to solve a specific, complex and 
difficult to predict problem, such as one of the medical classification problems. 
Another issue related to the data collection part is the quality of the data. We 
should not start the next step if we have only images of healthy irises or if the set 
of malignant images is only a small percentage of the whole database. There will 
be no meaningful results. The perfect scenario is to have a ratio from malignant 
to benign cases of 50% each. At the same time, in most cases the database should 
not be small like 50 cases in total. In the case of classification problem with more 
than two possible prediction labels, each label data set should be equal in the best 
case. A robust algorithm should generalize the problem. Bigger database makes it
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possible for such an algorithm to generalize better. We explain the generalization 
more thoroughly in this chapter, while we go into detail with specificity and 
sensitivity. 

2. Data preprocessing. If we have a data set of images, we usually need to do some 
image processing work before we start the feature extraction or training part. 
Image-processing work can be noise reduction, image scaling, or other similar 
actions that make the input data have the same format. This kind of work applies 
also to other data sets such as sound or text. 

3. Feature extraction. As soon as we have our database of malignant and benign 
cases, we should extract features from each image. Doctors use some charac-
teristics of an iris melanoma to make a diagnosis. Most methods need more 
“computer-friendly” information. The feature types are explained in the next 
section of this chapter. To simplify again, we need to transform the characteristics 
used by physicians into a numerical form. Image processing is commonly used 
for feature extraction if we deal with images. Using it, we can easily measure the 
asymmetry of the iris shape. Asymmetry can be one of the features. The goal in 
this phase is to create a vector of features. Building the feature vector by feature 
extraction is very specific to each classification problem. Plenty of ideas on how 
to make it efficient for a given problem have been published in [ 30]. 

4. Feature selection. The features we extracted should usually be normalized. How  
we should do this depends on the implementation of the classification method. 
In most cases, we normalize the feature value to be in the range of 1 and .−1. It  
is important to do so because sometimes the feature vector consists of too many 
features and before we go to the next phase we select only the best features. 
There are many methods [ 31] to check the quality of the features and its impact 
on the overall classification result. We describe a few of these later in this book. 
Feature selection is significant for a few reasons. Reducing the number of features 
increases performance. In other words, it makes the training part happen faster. 
Each additional feature brings another dimension to our classification problem. 
Increasing the dimensionality is good to some extent, because if the dimension is 
too high, we will lose the generalization of our algorithm and finally the prediction 
success rate [ 32]. It is explained in more detail later in this chapter. The feature 
selection part is not needed for some deep learning methods where almost pure 
data are used as the input. 

5. Training. This part is called the training or learning phase. Depending on the 
type of classification method used, this part can be skipped. We will describe the 
types of classification methods in more detail later in this chapter. The goal of the 
learning part is the model. It’s build with using training data set. In [  24] the  
model is described as nothing more than the result of applying an algorithm to a 
data set and is usually a representation of the data. Later, we will describe how 
to properly prepare a training data set. During the training part, the algorithm 
is learning how to predict the given data set. To simplify, we can say that the 
algorithm sets the parameters to a value that gives the highest accuracy for the 
given data set. These parameters are different depending on the method used. 
Some parameters can be set by us before the learning part starts.
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6. Prediction. This is the essential part of the whole process. In this phase, we take 
the model and execute our prediction on the test data set. Our algorithm returns 
the predicted label for each feature vector. Although it is the crucial part, in most 
cases it takes much less time than other parts of the process. 

7. Validation. Some models and predictions are better than others. It depends on 
many aspects. We have mentioned how the data set should be collected, what 
kind of features we extract, what feature we select, what classification method 
and parameters are used, etc. Good practice is to run the training and prediction 
phase with different parameters and different classification methods. This allows 
us to get a wider overview and choose the best methods from the set that we have 
checked. In addition, some measurements are available to check the quality of 
the prediction results. Some are described in more detail later in this chapter. It 
is important to note that we should have a validation data set to verify the model 
on a data set that was never used before for training or testing. We explain it in 
more detail later in this chapter. 

We can also report our results and publish them, but it is not mandatory for obvious 
reasons. The process can also be described in a shorter way than in [ 33] or [  3]. 
In later chapters, most methods are supervised to fully cover the process explained 
above. Methods in which feature selection is usually done during the training and 
the next validation are unsupervised. The reason for this is the lack of labels in the 
data sets. When it comes to deep learning, we usually skip parts of feature extraction 
and selection, since the data given in deep learning methods are in many cases raw 
data. Deep learning methods are also used to discover features during training. We 
explain it more extensively in the last chapter. Reinforcement learning also works a 
bit differently and does not exactly fit the explained process. 

1.4 Features 

There are a few terms related to features in pattern recognition. In the beginning, we 
describe the data collection and feature extraction in more detail. Next, we focus on 
a feature vector and a feature space. At the end of this part, we describe the kinds of 
feature that we have. 

Data collection and feature extraction are usually the most time-consuming part. 
The approach in both cases is individual for each classification problem. Let us con-
sider two examples. If we want to analyze the customer behavior of an e-Commerce 
solution, we would need to set up an infrastructure of servers with solutions like 
Apache Flume or similar. In the event of a medical problem, such as bone cancer, we 
need to collect X-ray images, usually directly from a doctor’s medical database. For 
each problem, different features need to be extracted. For our e-Commerce exam-
ple, we can extract such features as the operating system used by the customer, the 
country of the customer, how often she/he buys a product, etc. In case of a bone 
cancer detection problem, our feature vector can consist of bone symmetry, fractal
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box dimension value, differences in the image during a time slot, etc. A feature vector 
consists of at least two features. It can be mathematically described as follows: 

.xi = [xi1, . . . , xim]T ∈ R, where i = 1, . . . , n. (1.1) 

We have . n feature vectors . xi . It consists of .m features .xi1, . . . , xim . The number 
of features .m depends on the problem to be solved and how the features affect 
the accuracy. Each additional feature increases the dimension of the problem to be 
solved. It is called feature space. The feature space is two-dimensional if we have 
two features, three-dimensional in the case of three features, and so on. We show a 
few examples later in this book. 

As shown in two previous examples, the features can differ from each other. 
Depending on the classification problem, we can deal with different types of feature. 
In [ 34] a taxonomy of features is presented (see Fig. 1.2). We have two main types 
of features: quantitative and qualitative. Qualitative features are those with a small 
number of possible values. Quantitative features have a number of possible values. 
Let us take a few examples to get a better understanding. If we want to predict brain 
cancer only on the basis of MRI images, then one of our features would probably be 
the asymmetry. Without using more sophisticated methods such as fractal methods 
to measure the asymmetry, we would say that there are four possible values. We can 
say that the brain on the images is symmetric, x-axis asymmetric, y-axis asymmetric, 
or completely asymmetric. 

In 1983 the Detroit Pistons won against the Denver Nuggets 186–184. This game 
is known as the one with the highest score in the NBA so far. Usually, the scores 
are somewhere between 80 and 120, but we cannot exclude a score that is lower or 
greater. Let us assume that we would like to take the best score of a team as one of 
our features to predict who will be the NBA Champion this year. We would need to 
consider a wide range of values. 

In 1986 we witnessed the Chernobyl nuclear reactor disaster. It happened because 
of the lack of well-prepared security procedures. Since then, many security proce-
dures have been introduced to avoid this kind of situation in the future. Let us imagine 

Fig. 1.2 The feature taxonomy proposed in [ 34]
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that we want to build a classifier that will be able to predict such a situation. One of 
the most important features would be the temperature within the reactor. The range 
is also quite wide in this case. 

Fun fact: Children typically begin recognizing letters between the ages of 2 
and 4, with significant individual variation. By age 2, many children can sing 
or say aloud the “ABC” song. Around age 3, they may recognize about half 
the letters in the alphabet and start to connect letters to their sounds. By age 
4, children often know all the letters of the alphabet and their correct order 
[ 35]. 

A classifier needs a feature vector consisting of values that are readable for it. 
This means that we need to convert our feature values to a numerical value. Few 
commonly known methods are used for making this happen, such as discretization, 
approximation, or just simple value assignment. The asymmetry described above can 
be represented as follows: 

• symmetry as 1, 
• y and x axis asymmetry as 0,  
• completely asymmetry as .−1. 

In this example, we assign a value for each case. We assumed here that the x- or  
y-axis asymmetry does not make any difference in setting the diagnosis. Some other 
features need to be represented by a number of a range. Return to our example of skin 
cancer. In skin cancer, some scoring methods are used when making the diagnosis, 
taking into account the age of the patient. This is because the probability of skin 
cancer increases with age. Hunter score [ 36] divides the age factor into a few ranges 
such as 0–20, 20–30, etc. As a feature, we need to assign each range a value that will 
be used next in the classification. If we have a bunch of values divided into ranges, we 
can gain a better generalization of a given feature. In the case of education degrees, 
we can assign a value to each degree. For the NBA example, it is even easier since 
the score is already a number. 

Classification 

In this part, we discuss the classification problem. The goal is to understand how a 
machine learning algorithm works. The fundamental part of each term mentioned 
above is the classification methods. It does not matter whether we predict the stock 
market or an illness based on historical data; we always have to solve a classification 
problem. From a mathematical point of view, it can be described as follows: 

.D : Rn → �. (1.2)
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Fig. 1.3 Example of a medical classification problem. The differences of benign (a) and malignant 
(b) skin lesion are shown on the dermatoscopy images. Source [ 37] 

.D is our set of classifiers if we have 3 ensemble classifiers (see Chap. 7). .Rn is a 

.n-dimensional space of features, where . n is the number of features in the feature 
vector. .� is the set of labels .ω1, ..., ωn . Some classification problems can be solved 
with one classification method . d1, but in some cases an ensemble of classifiers . D
must be constructed. A label is also known as a class or a group. 

Example 1 (Skin moles) Let us take an example. In Fig. 1.3 we can see an example 
of a skin mole. Dermatologists use scoring methods to establish a diagnosis. Let us 
take into account only two features: asymmetry (. x1) and number of colors (. x2). If we 
take three random cases of cancer and benignity and draw a graph, then it might look 
like in Fig. 1.4. The red and blue marks are our classes: benign and malignant. The 
green case is a new one, in which we do not yet know whether it is a benign mole or a 
cancer. Proven cancer cases are marked red and benign blue on the chart. In addition 
to how dermatologists diagnose cases, we can see that cancer cases are just moles 
of many different colors or high asymmetry. The benign moles are symmetric and 
consist of fewer colors. If we are asked to draw a straight line between malignant and 
benign moles, it might look like a dashed line in Fig. 1.4. For us, it is clear where the 
boundary between cancer and benign is, but let us assume that we have a database 
of 500 moles with 100 cancer, 250 benign, and 150 other disease cases. In the real 
world, in many cases, it is difficult to distinguish cancer from benign moles, even by 
experts [ 38]. The linear classification problem shown in Fig. 1.4 rarely occurs. Most 
classification problems are more complex. Let us take a look at the next example, 
which is a little more complex. 

Example 2 (XOR) Exclusive OR is a commonly known logical operation. It can be 
written as follows: .p ⊗ q = (p ∨ q) ∧ ¬(p ∧ q). Consider XOR as a classification 
problem in which both logical values are our features .x1 and . x2. The result of the 
XOR operation will be our label (. y) as shown in Table 1.1.
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Fig. 1.4 Simple binary classification problem with two features: asymmetry (. x1) and number of 
colors (. x2) 

Table 1.1 XOR result of two 
logical statements.x1 and. x2

.x1 .x2 . y

1 1 0 

1 0 1 

0 1 1 

0 0 0 

We can draw a simple graph of the data shown in Table 1.1 as shown in Fig. 1.5. 
It is not possible to draw a straight line like we did in the previous example. We 
need to draw the line in the shape of an ellipse or something similar to distinguish 
between two classes. This means that it is a non-linear classification problem. Most 
real-world-based classification problems are rather non-linear. Most examples shown 
in this book are non-linear classification problems. 

Before we move on to more difficult topics, we need to explain how a classification 
method works. We choose the minimum-distance classifier. It is a simple classifier 
that is also used in many other publications to show the big picture of training with 
machine learning methods [ 39]. There are a few terms that need to be explained here. 
We show a few functions that look similar but have a different name and do something 
else. The first function is the discriminant function. For a minimum distance classifier, 
it can be written as follows: 

.gk(x) = 2mT
k x − mT

k mk, (1.3)
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Fig. 1.5 A non-linear 
classification problem of 
logical XOR operation. The 
features.x1 and.x2 are two 
logical statements given as 
input to the XOR operation 

where .gk(x) is a function that at the end tell us which class a given . x should be 
assigned to. It is calculated for each class . k. We need to compare all the values of 
.gk(x). We assign the class. k for the highest value of .gk(x). In this equation, we have 
.mk , which is the center of input values of a specific. k class. Centers can be calculated 
as the average number of points of a given class: 

.mk =
∑

x

nk
, (1.4) 

where .nk is the number of training data sets for the label . k. The function that allows 
us to draw a line between classes can be written as follows: 

.g(x) = gi (x) − g j (x) = 0, (1.5) 

where .gi (x) is the discriminant function of each class. The function .g(x) is also 
known as a decision function. The line is also known as the decision surface or 
hyperplane. If we inject our discriminant functions into the above equation, we get 
our .g(x) function as follows: 

.g(x) = 2(mT
i − mT

j )x + mT
j m j − mT

i mi . (1.6) 

Example 3 (Minimum distance classifier) We prepared a training data set of 20 
feature vectors, ten for each class. It looks like shown in Table 1.2. Our feature space 
looks as shown in Fig. 1.6. We don’t need to calculate anything to see that it is a
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Table 1.2 Minimum distance classifier training set example 

.x1 .x2 .y .x1 .x2 . y

. −0.95 . −0.80 . −1 0.52 0.52 1 

. −0.80 . −0.30 . −1 0.70 0.53 1 

. −0.70 0.10 . −1 0.74 0.91 1 

. −0.50 0.20 . −1 0.41 0.43 1 

0.10 . −0.80 . −1 0.45 0.33 1 

. −0.30 . −0.30 . −1 0.97 0.05 1 

. −0.25 . −0.70 . −1 0.99 0.18 1 

. −0.60 . −0.45 . −1 0.67 0.18 1 

0.25 . −0.80 . −1 0.74 0.89 1 

0.40 . −0.70 . −1 0.06 0.49 1 

Fig. 1.6 Minimum distance 
example data set shown in 
two dimensional feature 
space. Centers of each 
label/class are filled 

linear classification problem. We could easily draw a line between the red and blue 
points, but how does the classifier do it? 

First of all, we need to calculate the center points of each class. The average of 
each point would be as follows: 

. m−1 = [−0.335 −0.455
]
,m1 = [

0.625 0.451
]
.

We can implement two methods to calculate the centers of two label data sets (see 
the Listing 1.1). In calculate_centers we calculate the .m−1 and .m1 centers. 
We go through the feature vectors by label and calculate the average values of . xi1
and .xi2 of each class. 

1 def  calculate_centers  ():  
2 unique_labels  =  np.  unique  (  labels  )  
3 centers  =  []  
4 for  label  in  unique_labels  :  
5 centers  .  append  (  dataset  [  labels  ==  label  ].  mean  (  axis  =0)  )  
6 return  centers  

Listing 1.1 Minimum-distance classifier label center calculation
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Both centers are marked with a filled square and triangle sign in Fig. 1.6. The next step 
is to calculate the discriminant functions for both classes. Please, keep in mind that 
our feature vector . x can be written as a matrix of two features .

[
x1 x2

]
. Discriminant 

functions for our example are calculated as follows (Eq. 1.3): 

. g−1(x) = 2 · [−0.335 −0.455
] ·

[
xi1
xi2

]

− [−0.335 −0.455
] ·

[−0.335
−0.455

]

=

. = −0.67xi1 − 0.91xi2 − 0.31925,

. g1(x) = 2 · [
0.625 0.451

] ·
[
xi1
xi2

]

− [
0.625 0.451

] ·
[
0.625
0.451

]

=

. = 1.25xi1 + 0.902xi2 − 0.594026.

We used two methods to implement the discriminant function for each class. It is 
shown in the Listing 1.2. calculate_discriminant_function method is 
used to calculate the parameters of the discriminant functions. To obtain the value of a 
function, we need to use the calculate_discriminant_function_value 
method. It obtains the number of test vectors and calculates the discriminant value 
for a given label label_iter. 

1 def  calculate_discriminant_function  ():  
2 function_var_values  =[]  
3 bias  =  []  
4 for  center  in  centers  :  
5 print  (  center  [0])  
6 function_var_values  .  append  (  center  [0]∗2)  
7 bias  .  append  (np.  matmul  (  center  ,  center  .T))  
8 return  function_var_values  ,  bias  

Listing 1.2 Minimum-distance classifier labels discriminant function values calculation 

For now we have our two discriminant functions and centers calculated. Only the 
distinguishing function needs to be calculated. Let us put our results into Eq. 1.6 to 
get it: 

. g(x) = 2(

[−0.335
−0.455

]

−
[
0.625
0.451

]

) ·
[
xi1
xi2

]

+
[
0.625
0.451

]

· [
0.625 0.451

] −

. −
[−0.335
−0.455

]

· [−0.335 −0.455
] = 0.

Finally, we get the following function: 

. g(x) = −1.92xi1 − 1.812xi2 + 0.274776 = 0.

The function .g(x) parameters calculation can be implemented as shown in the 
Listing 1.3. We have only one method, called calculate_hyperplane in which 
we take the centers of both labels and calculate the parameters as shown above. This
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method returns two parameters, which in the current example is . [−1.92,−1.812]
and a bias that is .0.274776. Later in this book, we explain the hyperplane and deci-
sion function in more detail, as both are commonly used as terms that distinguish 
between classes. 

1 def  calculate_hyperplane  ():  
2 hyperplanee_variables  =  centers  [0]  
3 for  i in  range  (1 ,  len  (  centers  )):  
4 hyperplane_variables  =np.  subtract  (  hyperplane_variables  ,  centers  [i])  
5 hyperplane_bias  =np.  dot  (  centers  [  len  (  centers  )−1],centers  [  len  (  centers  )  

−1].T) 
6 for  i in  reversed  ( range  (0 ,  len  (  centers  )−1)): 
7 hyperplane_bias  =np.  subtract  (  hyperplane_bias  ,  np.  dot  (  centers  [i],  

centers  [i].T))  
8 return  hyperplane_variables  ∗2  ,  hyperplane_bias  
9 

10 def  get_hyperplane  ():  
11 denominator  =  np.  array  (  hyperplane_vars  ).  ravel  ()  [0]  
12 features  =  np.  array  (  hyperplane_vars  ).  ravel  ()  [1:]  
13 points  =  []  
14 print  (  denominator  )  
15 for  cut_point_id  in  range  ( len  (  cut_points_y  )):  
16 numerator  =  0  
17 for  feature  in  features  :  
18 numerator  =  numerator  +  np.  dot  (  feature  ,  cut_points_y  [  

cut_point_id  ])  
19 points  .  append  ((  numerator  +  hyperplane_bias  )/−denominator  )  
20 return  points  

Listing 1.3 Minimum-distance classifier discriminant function values calculation 

The above function is shown in Fig. 1.7 with a dashed line. 
Now, let us take two random feature vectors from testing data set:. x21 = (0.4, 0.1)

and.x22 = (0.1,−0.4). To get the prediction, we need to calculate both the discrimi-
nant function values. For the first vector, we have both discriminant function values 
as follows: 

. g−1 = −0.268 − 0.091 − 0.31925 = −0.67825,

. g1 = 0.5 + 0.0902 − 0.594026 = −0.003826.

Fig. 1.7 Minimum distance 
example with hiperplane 
marked with gray dotted line 
and two example vectors of 
testing data set



1.5 Taxonomy 15

The prediction is the class where the value of the discriminant function is higher. 
We see that for the vector .x21 the predicted class is 1. Compare it with our second 
vector .x22: 

. g−1 = −0.067 + 0.364 − 0.31925 = −0.02225,

. g1 = 0.125 − 0.3608 − 0.594026 = −0.829826.

In this case, the predicted class is .−1. A quick look at Fig. 1.7 shows that the pre-
diction went well. In the Listing 1.4 the implementation of the prediction method is 
shown. It is about getting two discriminant function values and comparing both. The 
label is assigned with the highest value of the discriminant function. It is shown on 
line 9 of the Listing 1.4. 

1 def  predict  ():  
2 prediction  =[]  
3 unique_labels  =  np.  unique  (  labels  )  
4 for  test_id  in  range  ( len  (  test_set  )):  
5 best  =  []  
6 for  label_id  in  range  ( len  (  unique_labels  )):  
7 best  .  append  (np.  dot  (  discriminant_variables  [  label_id  ],np.  array  
8 (  test_set  [  test_id  ]))−bias_variables  [  label_id  ])  
9 prediction  .  append  (  unique_labels  [np.  argmax  (  best  )])  

10 return  prediction  

Listing 1.4 Minimum-distance classifier prediction 

So we learn our first classification method. Before we go into the next classification 
methods, we need to introduce several mathematical and statistical terms. 

1.5 Taxonomy 

In this section, we focus on the different types of machine learning methods. There are 
many machine learning methods, and for someone new to pattern recognition, it can 
be difficult to understand the relations between methods and types of methods. We 
have divided this section into two parts. In the beginning, we present the related work. 
We present the most interesting taxonomies that have already been published. The 
goal of this section is to show the differences between the types of machine learning 
methods in an efficient way. We want to cover all methods, but it is not really possible, 
because of the number of methods. That is why we propose a taxonomy that should 
be much easier to understand for someone who is new to pattern recognition. This 
is what the second part of this section is about. 

Past works 

There are some types of method that are so popular that they are repeated in each 
book on machine learning. So far many taxonomies have been introduced. Most are 
complementary to each other, but are shown from different points of view. Consid-
ering how the discriminant function approach works, we can divide the methods 
as shown in Fig. 1.8. This taxonomy consists of four major types: similarity-based,
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probability approach, decision boundaries, and combined classifiers. We have already 
explained the similarity and probability theory that are used in classifier methods. 
Decision boundaries and combined classifiers are explained in next chapters. The 
methods shown in Fig. 1.8 are just a few of the entire list of classification methods. 
The nearest mean is also known as the nearest centroid or Rocchio classifier. Cal-
culate the centroid of each class from the training data and assign the label where 
the centroid is closest to a new element from the test data set. Template matching 
is strongly related to image processing methods. It matches the templates defined 
in the images. Learning Vector Quantization (LVQ) is also known as a Kohonen 
network or Self-Organized Map (SOM). It is a type of neural network based on data 
without the knowledge of class assignment. It is the neural network that classifies the 
similarity of elements without prefixed templates or patterns. Linear Discriminant 
Analysis is also known as Fisher’s classifier or Fisher’s linear discriminant. As can 
be inferred from the name, it is a linear classifier. It is a simple classifier that can 
be compared to linear regression. It can also be used for dimensionality reduction. 
The dimensionality problem is explained in Chap. 4. QDA is known as Quadratic 
Discriminant Analysis or Quadratic Classifier. It is similar to LDA, but instead of 
linear separation, it enables us to separate non-linear. Kernel-based methods, such 
as the Parzen kernel, move a problem to a higher dimension, where it can be solved 
easier or solved at all. The SVM method that use a kernel is explained in Chap. 4. 
kNN is a more complex version of the 1-NN classifier. In this case, we take k nearest 
neighborhood elements k to assign the proper label. It is explained together with 
the 1-NN classifier in Chap. 4. The perceptron is the simplest neural network-based 
classifier. It is just one neuron that is a linear classifier but works totally differently 
from LDA. It is explained in Chap. 8. RBF is a more complex network based on the 
radial basis function. It is commonly used in pattern recognition. RBF in the sense of 
a neural network type is a complex network where the neurons activation functions 
are Radial Basis Functions. It is explained in Chap. 8. MLP stands for Multilayer 
Perceptron and is a network that consists of many layers of perceptron neurons. It 
is much more complex compared to a single perceptron. Using MLP, we can solve 
complex classification problems. It is explained in Chap. 8. SVM stands for Support 
Vector Machine and is a method in which the goal is to prepare a horizontal plane 
that distinguishes between elements of different labels. The hiperplane is prepared 
in such a way that the biggest margins are between elements of different labels, and 
the hiperplane are found. SVM uses Lagrangian multipliers to make the calculations 
of the hiperplane easier. SVM is commonly used in image-based pattern recogni-
tion. It is explained in Chap. 6. The decision tree is a simple classifier that is also a 
very fast method of classifying elements. Building the tree is much more complex 
and time consuming than the classification part. It is explained in Chap. 4. The  last  
classification method, or rather a group of classification methods, is a combined 
method. It is a group that combines several classification methods or many instances 
of the same method. Using more than just one classification method instance can give 
better results. An example of a combined classifier is random forests that combine 
instances of decision trees. More information on combined classification methods 
can be found in Chap. 7.
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Another taxonomy, or rather a simple division, into groups, is proposed in [ 41]. 
The authors divided machine learning methods in a different way compared to [ 40] 
and divided the methods into four main groups: 

1. template matching, 
2. statistical classification, 
3. syntactic or structural matching, 
4. neural networks. 

This is a very high-level taxonomy. We have already explained the template matching 
methods. Many of the methods presented in this book are statistical classification 
methods. Regression-based methods or the kNN method are statistical methods. 
Syntactic and structural matching methods are based on graphs or grammars. Struc-
tural methods are decision trees. We have dedicated a chapter to neural networks. In 
Fig. 1.9 we present another taxonomy. In [ 34] the methods are divided into two main 
groups according to the approximation method. The first group is about methods that 
are based on class-conditional probability density function that probability priors. 
A probability density function is a function that defines the likelihood (probability) 
of an outcome for a given case. To simplify things, these methods are based on 
probability theory. The second is based on boundaries and discriminant functions. 
Some methods presented in Fig. 1.9 are already shown in Fig. 1.8. LDC or QDC 
are different names for LDA and QDA. Methods like k-NN, Parzen kernel method 
were also shown. In histograms, we can merge two histograms of each class into 
a higher-dimensional space and use some probability methods to distinguish the 
new elements. The mixture discrimination method is also known as the Gaussian 
mixture models method. It is a probabilistic method similar to the k-means method, 
which is described in Chap. 4. Logistic discrimination is a different name for logistic 
regression. Tree classifiers are also known as decision trees. In this taxonomy, both 
methods are considered separately. Rosenblatt’s perceptron is a different name for 
the perceptron. In this case, we add the name of the inventor. The generalized linear 
discriminant is a different approach of LDA [ 42] that is used in high-dimensional 
cases. A special case of LDA is the piecewise linear discriminant classifier that 
consists of a set of linear functions that together distinguish new elements [ 43]. Dif-
ferent approaches to the taxonomy of machine learning methods can also be found in 
[ 24, 44, 45]. 

Proposed taxonomy 

The taxonomy of machine learning methods can be divided taking into account a 
few levels: input data types, architecture depth, and the main concept of the method. 
Based on the input data, there are three major groups of machine learning methods: 
supervised, unsupervised, and reinforcement. All methods belong to one of these. 
Supervised methods are those where the output is known during training. A medical 
diagnostic case serves as an example of such a method, in which, for training sake,
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we already know if a given input, like an image, is the image of a cancer or not. 
Unsupervised is the opposite approach. This means that we do not have information 
if that it is cancer or not. This approach can be useful in any anomaly detection, but 
there are also other cases where it brings benefits. There are also methods known as 
reinforcement learning methods in which we have labels, but use it only to know if the 
method is doing well and uses the reward and penalty mechanism to achieve better 
accuracy. Such methods usually go through the same path many times. An example 
of a reinforcement learning approach is OpenAI Gym [ 46] where the bot/method 
plays a game, learns, and repeats the game until the game ends. We explain the 
unsupervised and supervised methods in the next chapters. On the basis of the depth 
of the architecture, we divide the methods into shallow and deep learning methods. 
Deep learning is used by some non-researchers as an alternative to machine learning. 
This is not true, as deep learning is a group of methods that are neural networks 
consisting of many layers. That is why they are called deep. Deep learning has 
become a buzzword in recent years. The last level of division is the concept of 
machine learning method. Some methods are based on the probability theory; others 
are based on decision trees, neural networks, etc. Chapters 4–8 are about different 
method groups based on the general concept. There are also other types of methods, 
such as evolutionary or combined learning. Evolutionary learning is based on genetic 
algorithms and combined takes more than one of the same or different methods 
together. It is difficult to draw a taxonomy with all the available methods. There are 
more than a hundred methods available. In Fig. 1.10 we choose a few methods and 
divide them according to the mentioned levels. At the top, we divided them into 
shallow and deep methods. On the left, we mark only neural networks as the biggest 
group, and recently the most popular. On the right, we marked the supervised and 
unsupervised methods. In the middle, we mark a few methods that are explained 
later in this book, but, as mentioned before, there are plenty of other methods that 
are similar. 

1.6 Quality Metrics of Classification Methods 

In this section, we focus on how we can measure the quality of the classification 
method. Quality can be understood in several ways. That is why we have divided 
this section into three parts. In the first part, we describe common problems that 
appear when learning a classification method. It also includes some practical tips for 
avoiding common mistakes before using machine learning methods with your data. 
The second part discusses approaches for handling test, training, and validation data 
sets. We have already introduced this topic at the beginning of this chapter. In this 
section, we explain the most popular approaches for data set division in each group. 
The third part contains the most popular quality measurement methods. In this part, 
we skip the training data, work on the test data set, and compare it with the predicted 
output. An obvious quality measure is the accuracy of the success rate, but there are
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more sophisticated methods to measure quality, such as the ROC curve, .F1 score, or 
some other types of error rates, which are explained in this section. 

1.6.1 Training Phase Challenges 

During training, we can face two commonly known issues. The first is related to the 
number of features. It is hard to say what the best number of features to use, as it 
depends on the problem that needs to be solved. There are several methods that can 
measure the importance of each feature, so we can choose only the most important. 
Important means here how a feature affects the accuracy. It is important to reduce 
the number of features to the minimum that affects the result, as a higher number 
of features makes the computation more complex. For two features, we consider a 
two-dimensional classification problem. For three, it would be a three-dimensional 
problem. The more features there are, the larger the problem we need to solve. It 
is known as the dimensionality problem [ 47– 50]. We have several commonly used 
feature selection methods that can be divided into four main groups [ 51]: 

• ranking, 
• wrapper, 
• hybrid, 
• embedded. 

Ranking methods are also known as filter methods. In this type of feature selection 
method, we do not use a classification method. The goal is to establish a ranking of 
the features. Pearson correlation method is one of such a method. We will explain 
it in detail in the next chapter. We measure the correlation between the features. We 
can skip one of the features if we know that it has a linear correlation with some 
other feature or features. This means that adding such a feature does not add any 
value to the final result. The name of the second group of methods works that the 
feature selection method wraps the classification method and based on the accuracy 
selects the features. It takes a set of features, performs the classification, gets the 
accuracy, and compares it with the accuracy obtained from a data set of a different 
set of characteristics. If we have many features, it can be time consuming to use 
this kind of method. These methods start with an empty set of features. It takes one 
feature in each iteration and stops as soon as adding any feature from what is left 
does not increase the accuracy. Hybrid methods are a mixture of classification and 
wrapping methods. In this type of methods, we use the ranking part first, and then 
the wrapper part. It makes a huge difference if we have many features. Reduce the 
number of features by ranking those before we move on to the more time-consuming 
wrapper part. The last type is included in the classification method. This means that 
it is not used outside the machine learning method but is part of it. A frequently used 
approach is the use of genetic algorithms within the classifier.
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By using a method of mentioned groups, we can reduce the number of features 
to the absolute minimum that has an influence on the final result. In addition, adding 
more and more features can even reduce accuracy. As shown in Fig. 1.11, the error 
rate can increase while increasing the number of features at some points. 

Overfitting is another common problem that can occur while training a classifica-
tion method. It is about under-training and over-training. The goal of the training part 
is to generalize. It means that we would like to have a method that gives high accu-
racy for any data of a given problem. Under-training occurs when we do not train the 
method enough. We have not prepared enough training data, and the method does not 
have enough data to train on. Therefore, the method gives lower accuracy, because it 
assigns labels incorrectly. The same result we get with over-training, but the reason is 
slightly different. We train the method with too many data. Especially when we have 
a lot of feature values of the same label that are close to each other. The algorithm 
adjusts very well to classification for given data and does not generalize the solution 
for a given problem. An example error rate to training data amount comparison is 
shown in Fig. 1.12. It is important to do so, remember that more data does not mean 
better. It is important to have a set of features that accurately represents a given prob-
lem. As we have already mentioned at the beginning of this chapter, the goal of a 

Fig. 1.11 Classification 
error rates depends on the 
number of features 

Fig. 1.12 Overfitting 
problem
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Fig. 1.13 Generalization problem of two training data sets 

classifier is to generalize the best possible. We cannot be sure that a given case is the 
best possible generalization, but there are some cases where it is clear that we do it 
wrong. In Fig. 1.13 the classification using two data sets is shown. In Fig. 1.13b, 
a data set that represents the classification problem well is shown. In case of 
Fig. 1.13a the classifier is not complex enough to classify properly. The last example 
(Fig. 1.13c) is a classifier that works very well for given data, but will not work 
well for new data. It means it is just too adjusted to the training data and does not 
generalize enough. 

1.6.2 Data Sets Preparation Approaches 

One of the common problems that each data scientist has is to divide the data set 
into training and testing data sets. To understand the following equations, we need to 
introduce new designations. Let .Ln be our training data set of size . n, .Tm our testing 
data set of size . m, .Me the number of misclassified cases, . I a function that returns 1 
if there is a match between the predicted and the true value and.e(d) the error rate of
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classifier . d. We also use  the testing set  .X and the labels set . Y that we have already 
explained. We can write the error rate as follows: 

.e(d) = Me

m
. (1.7) 

The error rate can be calculated differently depending on the method of data set 
preparation method used. Few commonly used approaches are used to handle train-
ing, testing, and validation data sets. 

• resubstitution—R-method, 
• hold-out—H-method, 
• cross-validation—.π -method, 
• bootstrap. 

The first method is very simple. We have the same data set for training and testing. 
It is not the best solution if we consider having a solid classifier. The error rate can 
be written as follows: 

.eR(d) = 1

n

n∑

j=1

I(d(X j ;Ln) �= Y j ). (1.8) 

This means that we calculate the error rate for each element . j of our training data 
set and add 1 for each well-predicted case. We need to divide it by . n, which is the 
number of elements in the training data set. The approach is generally the same as 
in the case of Eq. 1.7. 

The second method involves dividing a data set into two data sets. It can be divided 
into half or other proportions. One set is our training data set, and the other training 
data set. We can swap these sets and calculate the average of both sets. The error rate 
can be calculated as follows: 

.eτ (d̂) = 1

m

m∑

j=1

I (d̂(Xt
j ;Ln �= Y t

j ). (1.9) 

Compared to the resubstitution method, it uses only the testing data set. Cross-
validation is the most common approach. It is also sometimes called a rotation 
method. We need to divide the data set into . k subsets. The elements in each set 
are chosen at random. One of these sets is taken as a test set, and the other sets are 
merged into the training set. It should be repeated . k times for each . k subset. The 
error rate can be calculated as follows: 

.eCV (d) = 1

n

n∑

j=1

I (d̂(X j ;L(− j)
n �= Y j ). (1.10)
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A special case is where .k = m. This means that we have subsets, each consisting 
of just one element. This approach is known as the leave-one-out or U method. 
The Bootstrap method can be considered as an extension of resubstitution. The goal 
is to generate multiple sets from the main set by random selection. We use the 
resubstitution method on each set and calculate the average error at the end: 

.eB(d) = 1

B

B∑

b=1

∑n
j=1 I(Z j /∈ L�b

n )I(d(X j ;L�b
n ) � Y j )

∑n
j=1(Z j /∈ L�b

n )
, (1.11) 

where .B is the number of boostrap sets and .Z j is a set of currently observed object 
or objects .Z j = (X j , Y j ). 

1.6.3 Output Quality Metrics 

There are several metrics to show the quality of our classification model: 

• ROC which stands for Receiver Operating Characteristic curve, 
• AUC—Area Under Curve, 
• .F1 score, 
• Precision, 
• Recall. 

To explain each metric in detail, we use an example again. 

Example 4 (Diagnosis) If a patient had asthma, a doctor can take a couple of actions 
to check if it is actually asthma. In addition to the action in the end, the doctor must 
make a decision whether the patient has asthma or not. The doctor gets the diagnosis 
mainly right, but it can be that the diagnosis is wrong because it is only a prediction. 
In Table 1.3 we present all possibilities. Positive means that the diagnosis is asthma. 
Negative means that there is no asthma diagnosed by the physicians. True and False 
are used to indicate whether the decision is correct. It could be that the doctor said 
it was asthma, but it was actually lung cancer or another disease. 

The best diagnoses are when we get a True Positive (TP) or True Negative (TN). 
In two other options, the diagnosis is incorrect. If we consider cancer diagnosis, a 
false negative (TN) scenario would be the worst scenario. 

Table 1.3 Possible scenarios of doctor’s diagnosis 

True condition 

Condition positive Condition negative 

Predicted Positive True positive (TP) False positive (FP) 

Negative False negative (FN) True negative (TN)
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The decision possibilities mentioned in Table 1.3 bring us to quality metrics. The 
most common metric is accuracy. It can be calculated as follows: 

.ACC = #TP + #TN

#TP + #TN + #FP + #FN
. (1.12) 

The first one that we describe is called True Positive Rate (TPR). It can be calculated 
as follows: 

.TPR = #TP

#TP + #FN
. (1.13) 

TPR is also called sensitivity or recall, and is a measure of good predictions within a 
set of cases. A higher rate means a measure of good asthma predictions in Example 4. 
By.#TP, #FP we mean the number of True Positive and False Positive cases, where. #
stands for the number of decisions. The opposite is specificity. It is also called TNR, 
which stands for True Negative Rate. It can be calculated as follows: 

.TNR = #TN

#TN + #FP
. (1.14) 

It is a measure that says how well we are at predicting negative scenarios. In Example 
4 it would say how good we are at diagnosing that a patient does not have asthma. 
Another important metric is precision, which is also known as Positive Predictive 
Value (PPV): 

.PPV = #TP

#TP + #FP
. (1.15) 

It is a ratio of positive cases that were predicted well to all positive cases, even those 
that are not well predicted. The opposite is the Negative Predictive Value: 

.NPV = TN

TN + FN
. (1.16) 

We can also calculate the False Positive Rate metric known as fallout. It is about how 
bad we are at predicting positive cases: 

.FPR = 1 − TNR. (1.17) 

The opposite of FPR is the False Negative Rate: 

.FNR = 1 − TPR. (1.18) 

Another popular metric is called the .F1 score and is a weighted accuracy measure. 
It takes PPV and TPR to calculate the score: 

.F1 = 2
PPV · TPR
TPR + PPV

. (1.19)
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The value .F1 as in the case of all previous metrics between 1 and 0, where 1 is the 
best. An interesting measure is the Matthews correlation coefficient measure, which 
is about the correlation between observed and predicted values. The value of MCC 
is between .−1 and 1. If we have a perfect classifier, we get MCC = 1. A random 
classifier is when we have MCC = 0 and a totally bad classifier if we have MCC = 
.−1. This measure can be calculated as follows: 

.MCC = #TP · #TN − #FP · #FN√
(#TP + #FP)(#TP + #FN)(#TN + #FP)(#TN + #FN)

. (1.20) 

Example 5 (Lung cancer diagnosis) We use the example of lung cancer diagnosis to 
explain how to calculate the quality metrics we have just described. In this example, 
we have three doctors: Dr. Smith, Dr. Williamson and Dr. Simpson. Each one is an 
oncologist and set diagnoses on daily basis. To compare how good each doctor is at 
making diagnosis of lung cancer we have a data set of twenty patients. Each doctor 
has a different set of patients. In Table 1.4 the data sets of patients and given diagnosis 
are shown. Based on the data given in Table 1.4 we can calculate the results of TN, 
TP, FN and FP. The results are shown in Table 1.5. It looks like Dr. Simpson gives the 

Table 1.4 Three doctors’ prediction compared to true condition of lung cancer 

Dr. Smith Dr. Williamson Dr. Simpson 

Condition Diagnosis Condition Diagnosis Condition Diagnosis 

1 1 1 1 1 1 

. −1 1 . −1 1 1 1 

1 1 1 1 1 1 

. −1 . −1 . −1 . −1 1 1 

1 1 1 1 1 1 

. −1 1 . −1 1 1 1 

1 1 1 1 1 1 

. −1 . −1 . −1 . −1 1 1 

1 . −1 1 . −1 . −1 . −1 

. −1 . −1 . −1 . −1 . −1 . −1 

1 1 1 1 . −1 . −1 

. −1 1 . −1 1 . −1 . −1 

1 1 1 1 . −1 . −1 

. −1 . −1 . −1 . −1 . −1 . −1 

1 1 1 1 . −1 . −1 

. −1 1 . −1 1 1 1 

1 . −1 1 . −1 . −1 . −1 

. −1 . −1 . −1 . −1 . −1 . −1 

1 1 1 1 1 1 

. −1 1 . −1 1 . −1 . −1
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Table 1.5 Example 5 basic quality metrics 

Quality metric Dr. Smith Dr. Williamson Dr. Simpson 

TN 5 9 10 

TP 8 9 10 

FN 5 1 0 

FP 2 1 0 

best diagnosis. We can calculate the remaining quality metrics for each physician. 
Let us start with Dr. Smith: 

. ACCSmith = 8 + 5

20
= 0.65,

. TPRSmith = 8

13
≈ 0.615,

. TNRSmith = 5

5 + 2
≈ 0.714,

. PPVSmith = 8

8 + 2
= 0.8,

. NPVSmith = 5

5 + 5
= 0.5,

. FPRSmith = 1 − 0.714 = 0.286,

. FSmith
1 = 2

0.8 · 0.615
0.615 + 0.8

= 2
0.492

1.415
≈ 0.695,

. 

MCCSmith = 8 · 5 − 2 · 5√
(8 + 2)(8 + 5)(5 + 2)(5 + 5)

= 30√
10 · 13 · 7 · 10 = 30√

9100

= 30

95.4
≈ 0.314.

We can now compare the values that we got for Dr. Smith with Dr. Williamson and 
Dr. Simpson. The results are presented in Table 1.6. The results indicate the thought 
we had in the first place. It looks like Dr. Simpson makes the best prediction of lung 
cancer. The accuracy and Matthews correlation coefficient metrics are at a level of 
100%. Dr. Smith is almost as good, but as indicated by FNR and FPR, has some 
misclassified cases. The worst predictions are given by Dr. Smith. The accuracy is 
only 65%, so it is a bit more than a random guess. The MCC metric shows that 
it is even better. To calculate quality metrics, we can use Python and some simple 
arithmetic operations. An example is shown in Listing 1.5.
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Table 1.6 Quality metrics calculated for example presented in Table 1.4 

Quality metric Dr. Smith Dr. Williamson Dr. Simpson 

ACC 0.65 0.9 1.0 

TPR 0.615 0.9 1.0 

TNR 0.714 0.9 1.0 

FNR 0.385 0.099 1.0 

FPR 0.286 0.099 0.0 

PPV 0.8 0.9 1.0 

NPV 0.5 0.9 0.0 

.F1 0.695 0.9 1.0 

MCC 0.314 0.8 1.0 

1 def  calculate_quality_metrics  (  self  ):  
2 tn =  0  
3 tp =  0  
4 fn =  0  
5 fp =  0  
6 for  i in  xrange  ( len  (  self  .  data_set  )):  
7 if self  .  data_set  [i]  >  0:  
8 if self  .  data_set  [i]  ==  self  .  predicted_set  [i]:  
9 tp =  tp  +  1  

10 else  : 
11 fp =  fp  +  1  
12 else  : 
13 if self  .  data_set  [i]  ==  self  .  predicted_set  [i]:  
14 tn =  tn  +  1  
15 else  : 
16 fn =  fn  +  1  
17 acc  = ((  tp + tn)  ∗ 1.0)  /  ((  tp  +  tn  +  fp  +  fn)  ∗ 1.0)  
18 tpr  =  tp  ∗ 1.0  /  (tp  +  fn)  ∗ 1.0  
19 tnr  =  tn  ∗ 1.0  /  (tn  +  fp)  ∗ 1.0  
20 ppv  = tp /  (tp + fp)  ∗ 1.0  
21 npv  = tn /  (tn + fn)  ∗ 1.0  
22 fpr  =  1.0  − tnr  
23 fnr  =  1.0  − tpr  
24 f1 =  2  ∗ (  ppv  ∗ tpr  ∗ 1.0  /  (  tpr  +  ppv  ∗ 1.0)  )  
25 mcc  =  (tp  ∗ tn − fp ∗ fn)  /  (  sqrt  ((  tp  +  fp)  ∗ (tp + fn)  ∗ (tn + fp)  ∗ 

(tn  +  fn))  ∗ 1.0)  
26 return  [acc ,  tpr ,  tnr ,  ppv ,  npv ,  fpr ,  fnr ,  mcc ]  

Listing 1.5 Quality metrics implementation 

ROC stands for Receiver Operating Characteristic [ 52]. It is a curve that shows 
the performance of a classification method. A few examples of the ROC curve are 
presented in Fig. 1.14. To simplify, let us assume that we consider a binary classifier. 
To draw an ROC curve, we need to calculate two metrics: FPR and TPR, but the curve 
says much more than just the relation between those two metrics. If both metrics are 
high, we know that other metrics that we mentioned are high as well. In Fig. 1.14 
three simplified ROC curves are presented. The black-marked line is if we have a 
classifier that classifies with an accuracy of 50%. The accuracy on this level cannot 
be considered high. Such a classifier can be replaced with a coin throwing simulator 
and classify based on what we get. The blue-marked curve is for a classifier with good
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Fig. 1.14 Receiver 
operating characteristic 
curve 

accuracy. This means that it classifies the current problem well. The best classifier 
is when we get 100% precision. Such a ROC curve is marked red. 

Fun fact: The Receiver Operating Characteristic (ROC) curve was devel-
oped during World War II by electrical and radar engineers to improve the 
detection of enemy objects on battlefields. The term “ROC” originates from 
this application, reflecting its initial use in evaluating radar receiver perfor-
mance. a

a https://en.wikipedia.org/wiki/Receiver_operating_characteristic. 

An implementation of the calculation of the ROC curve is presented in the Listing 
1.6. To draw the ROC curve we need to get at least a few points and connect each to 
get the curve. To get those points, we need to calculate the TPR and FPR metrics at 
a given cut-off point. The cutoff point here means the point where we measure those 
metrics. In many cases, the cut-off points are chosen on the basis of the classification 
problem. For lung cancer, it could be the patient’s age. It means that we need to 
sort the testing data set by age and set the cut-off points as the age changes. In our 
example, we choose it to be 5, 8, and 10 cases of each label for Dr. Smith and 4, 7 
and 10 for Dr. Williamson. In the case of Dr. Simpson, the cut points do not matter as 
it is the perfect classifier case. We can choose other cut-off points or even calculate 
the FPR and TPR metric at each test data set element, but this would not change the 
ROC and AUC much. An example of the implementation of the calculation of the 
ROC curve is shown in Listing 1.6. 

1 def  calculate_metric_at_cutpoint  (  self ,  cutpoint  ,  label  ):  
2 cutpoint_value  =  0  
3 value  =  0  
4 for  i in  xrange  ( len  (  self  .  data_set  )):  
5 if self  .  data_set  [i]  ==  label  :  
6 cutpoint_value  =  cutpoint_value  +  1

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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7 if self  .  data_set  [i]  ==  self  .  predicted_set  [i]:  
8 value  =  value  +  1  
9 if cutpoint_value  ==  cutpoint  :  

10 break  
11 if label  >  0:  
12 values  =  value  ∗ 1.0  /  cutpoint  ∗ 1.0  
13 else  : 
14 values  =  1  − (  value  ∗ 1.0  /  cutpoint  ∗ 1.0)  
15 return  values  
16 

17 

18 def  calculate_metric  (self ,  cutpoints  ,  label  ):  
19 values  =  [0.0]  
20 for  i in  xrange  ( len  (  cutpoints  )):  
21 values  .  append  (  self  .  calculate_metric_at_cutpoint  (  cutpoints  [i],  

label  ))  
22 return  values  
23 

24 

25 def  calculate_roc_curve_values  (  self ,  cutpoints  ):  
26 self  .  check_sets_size  ()  
27 tpr_vector  =  self  .  calculate_metric  (  cutpoints  ,  1)  
28 fpr_vector  =  self  .  calculate_metric  (  cutpoints  ,  −1) 
29 tpr_vector  .  append  (1.0)  
30 fpr_vector  .  append  (1.0)  
31 return  [  tpr_vector  ,  fpr_vector  ]  

Listing 1.6 ROC curve calculation implementation in Python 

The code consists of three methods: main method calculate_roc_curve_ 
values, calculate_metric and calculate_metric_at_cutpoint. 
The first method executes the second method to get the tpr and fpr values at the 
cut points. Method calculate_metric iterated through each cut point and runs 
for each. The third method that calculated the TPR and FPR value. The cut-point 
TPR and FPR values are used to obtain the ROC curve. 

Example 6 (Lung cancer diagnosis II) We can take the previous example to explain 
the AUC metric. To calculate it, we need the TPR and FPR metrics for each cut point. 
The area under the curve is part of the ROC curve and is just the surface area under 
the curve. For the red-marked ROC curve shown in Fig. 1.14 the surface area is 1.0. 
The AUC value shows the quality of the classification method. The value can vary 
from 0 to 1, but each value that is 0.5 or less is about a classifier that does not classify 
well at all. A better explanation of the relationship between the AUC value and the 
quality of the classification method is shown in Table 1.7. For the previous example 
we get the ROC curves as it is shown in Fig. 1.15. Compared to ROC curves shown in 
Fig. 1.14, we see that the best predictions are given by Dr. Simpson and worst by Dr. 
Smith. In Python, we can use the method trapz from package numpy to calculate 
the surface under the curve. An example of usage is shown in Listing 1.7. 

1 from  numpy  import  trapz  
2 

3 def  calculate_auc  (self ,tpr ,  fpr ):  
4 return  trapz  (tpr  ,  fpr  )  

Listing 1.7 AUC calculation implementation in Python 

AUC values for Example 5 are shown in Table 1.8. The AUC values can vary in some 
cases depending on the cut-off points we choose.
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Table 1.7 Area under curve value and quality of a classification method relation 

Value Classifier quality 

1.0 Perfect 

0.99–0.9 Excellent 

0.89–0.8 Very good 

0.79–0.7 Good 

0.69–0.51 Poor 

0.5 Worthless 

Fig. 1.15 ROC curves of three example predictions given in Example 6 

Table 1.8 AUC values for Example 5 

Dr. Smith Dr. Williamson Dr. Simpson 

AUC 0.69375 0.95 1.0 

For Further Reading 

1. Müller AC, Guido S (2016) Introduction to machine learning with Python: a guide 
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Chapter 2 
Machine Learning Math Basics 

The goal of this chapter is to provide an explanation of several well-known mathe-
matical terms that are used in machine learning methods presented in this book. In 
the first part, we cover basic statistical terms such as standard deviation, variance, 
coefficient matrix, and Pearson correlation. It is followed by the probability terms 
and related topics like combinatorics, conditional probability, and probability distri-
bution. The third section, even though it is not very extensive, consists of the crucial 
part in each machine learning method—operations on matrices. The next section is 
about differential calculus. To understand what a gradient is, we need to explain a 
few other terms in the first place. The first term that we explain in this section is 
the limits. It is an obvious term for anyone who studied a technical oriented field. 
The second term explained in this section is derivatives. In the clustering methods 
explained in this book, fuzzy sets are used. The fuzzy logic is explained in the section 
next to differential calculus. The last part is an overview of the distance measures 
available. 

2.1 Statistics 

We are going to skip the part of mean explanation because we consider it to be 
obvious to everyone reading this book. The first two terms that we explain are the 
standard deviation and variance. The variation can be calculated as follows: 

.σ 2 = 1

n

n∑

i=1

(xi − x)2, (2.1) 

where .xi is an element of a set .X and . x is the mean of the set .X elements. Let us 
take an example for a better understanding. 
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Table 2.1 Student weights 
(kilograms) 

.x1 .x2 .x3 .x4 .x5 . x6

89 67 110 92 75 95 

Example 1 (Students) We have a group of six students. Table 2.1 shows the weight 
in kilograms of each student. 

For the data given in Table 2.1, we have a mean .x = 88. The variance is: 

. σ 2 = 
(1)2 + (−21)2 + (22)2 + (4)2 + (−13)2 + (−7)2 

6
≈ 193.33. 

The variance is a square of the difference between the elements and the mean. It is 
always positive and shows how varied a set is. 

There are two terms that explain a set better than variance. It is the average and 
standard deviation. Average deviation looks almost the same as the variance, but 
instead of the square of differences, we calculate the absolute value of it: 

.σa =
∑n 

i=1 |xi − x | 
n 

. (2.2) 

For data given in Example 1, we get the average deviance: 

. σa ≈ 11.33. 

The standard deviation is just a square root of variance: 

.σ = 
√ 

σ 2. (2.3) 

For example, the standard deviation of Example 1 would be: 

. σ ≈ 13.90. 

This means that the deviation from the mean is 12.85. It is easy to understand when 
we draw it as shown in Fig. 2.1. It is the average of how far the red dots (students’ 
weight) are from the blue line (mean). 

The next term that is important for understanding machine learning methods is 
correlation. The most popular correlation measure is the Pearson correlation. It is 
about how one feature depends on the other feature. We can say that the height of a 
dog is highly correlated with its weight. So we have two features: the size and weight 
of a dog, and we know that a larger dog is usually heavier. The correlation is a value 
of .−1 to 1 and represents the dependence of two values (features) like those shown 
in Table 2.2. The values presented are positive, and we have the same correlation 
for negative values. Some exemplary correlation charts are shown in Fig. 2.2. In Fig.  
2.2a, b we present a positive and negative total correlation. In Fig. 2.2c we have a very  
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Fig. 2.1 Standard deviation of the student example. Black dotted lines are the standard deviation 
margins 

Table 2.2 Correlation 
dependencies 

Correlation value Correlation 

0 No correlation between 
variables 

0–0.3 Low correlation 

0.3–0.5 Mid correlation 

0.5–0.7 Mid-high correlation 

0.7–0.9 High correlation 

Above 0.9 Very high correlation 

1 Total correlation 

low correlation example. The samples are much more chaotic than the previous two 
examples. In the last Fig. 2.2d example we show a negative curvilinear example of 
correlation. It is still a strong correlation, but not as strong as the first two examples. 
The correlation for two features can be calculated as follows: 

.r2 =
∑n 

i=1(xi1 − xi1)(xi2 − xi2)√∑n 
i=1(xi1 − xi1)2

∑n 
i=1(xi2 − xi2)2 

. (2.4) 

Example 2 (Learning) What is the correlation between hours spent learning and 
the final grade of an exam? Let us assume that we have five degrees from A to F. We 
have a range of points that correspond to each grade: 

• A—100–91, 
• B—90–81, 
• C—80–71, 
• D—70–61, 
• E—60–51, 
• F—50–0. 
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Fig. 2.2 Correlation examples 

Table 2.3 Correlation between hours spent on learning and exam grade exemplary data 

Average 
hours spent 
on learning 

10 22 30 38 44 48 

Average 
points 
collected 

40 52 61 75 88 95 

Let us assume that we have the averages of hours spent learning and points collected 
during the exam as presented in Table 2.3. It can be drawn as a chart like the one shown 
in Fig. 2.3. We can easily say, based on Fig. 2.3, that there is a positive curvilinear 
correlation. To be sure, we can calculate the correlation value as follows: 

. r = 
627 + 165 + 15 + 39 + 234 + 424√

1024 · 2265.5 ≈ 0.9874. 

It shows that there is a high correlation between the hours we spent learning and the 
final exam grade we receive. 
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Fig. 2.3 Average hours 
spent on learning compared 
to the final exam 

2.2 Probability Theory 

To better explain the basics of probability theory, we use some games. Let us take 
the first example. A traditional dice is a cube. It gives a number from one to six when 
rolled. What is the probability that we get the six when we roll it? A set of all possible 
cases is called sample space and marked as . �. In probability theory, we use sets to 
list all possibilities. For our example, it could be a set .A = {ω1, ω2, ω3, ω4, ω5, ω6}, 
where .ωk are the numbers we can get after rolling the dice. This means that the 
probability of getting six is equal to .P( A) = 1 6 , because there are the same chances 
of getting six as any other number from. A. 

2.2.1 Combinatorics 

Probabilistic combinatorics is part of probability theory and consists of several oper-
ations to get the probability of an event, such as getting a six in a dice game. These 
operations are listed in Table 2.4. 

The value of . n is the number of possibilities in the set . A. The  value of  . k is the 
number of possible combinations. To better understand the methods given in Table 
2.4, we present some examples. 

Example 3 (Books) What is the number of combinations of orders of four different 
books? The permutation shown in Table 2.4 is the easiest way to calculate the number 
of possibilities. It can be easily calculated as a factorial of 4: 

. Pr (4) = 4! =  24. 

In Python, there is a math library that already has a factorial implementation. You 
can use it as shown in the Listing 2.1. 

1 from  math  import  factorial  
2 

3 result  =  factorial  (4)  

Listing 2.1 Calculation of permutation in example 3 
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Table 2.4 Basic combinatorics methods 

Order Repetition Equation 

Yes No Yes No 

Permutation .+ .− .− .+ . Pr (n) = n! 
Permutation with repetition .+ .− .+ .− . Pr (n; n1, n2, . . . ,  nk ) =

n! 
n1!·n2!·...·nk ! 

Variation .+ .− .− .+ . V (n, k) = n! 
(n−k)! 

Variation with repetition .+ .− .+ .− . V (n, k) = nk 

Combination 
.− .+ .− .+ . C(n, k) =

(
n 

k

)
= n! 

k!(n−k)! 

Combination with repetition 
.− .+ .+ .− . C(n, k) =

(
n + k − 1 

k

)
= 

(n+k−1)! 
k!(n−1)! 

Table 2.5 All possible combinations of Example 4 

1233 1323 1332 3312 

3321 3132 3231 2331 

3213 3123 2133 2313 

Example 4 (Set order) Let’s assume that we have a set of digits.1, 2, 3, 3. The digit 
. 3 occurs twice. This is what we know about someone’s safe lock-digit combination. 
How many combinations are possible when we know that the order is important? 
Permutation with repetition can give us the right answer: 

. Pr (4; 1, 1, 2) = 
4! 

1!2!1! = 12. 

We have only 12 possibilities, so the safe lock is not that secure (Table 2.5). 

Example 5 (Elevator) Let us say that we have an elevator in a four-story building. 
There are three people who will use this elevator, and each one will leave it on a 
different floor. How many possibilities do we have? With variation, we can calculate 
it easily: 

. V (4, 3) = 4! 
(4 − 3)! = 24. 

We have 24 possibilities (Table 2.6): 

Example 6 (Coin) How many different possibilities do we have of reverse and 
obverse when we flip a coin five times in a row? We can use variation with repetition 
to calculate it (Table 2.7): 

.V (2, 5) = 25 = 32. 



2.2 Probability Theory 43 

Table 2.6 All possible variations of the elevator example 

11 22 33 11 22 34 11 23 32 11 23 34 11 24 33 11 24 32 

12 21 33 12 21 34 12 23 31 12 23 34 12 24 33 12 24 31 

13 21 32 13 21 34 13 22 31 13 22 34 13 24 31 13 24 32 

14 21 33 14 21 34 14 22 33 14 22 31 14 23 31 14 23 32 

Table 2.7 All possible combinations of Example 4 

OOOOO OOOOR OOORO OOORR 

OOROO OOROR OORRO OORRR 

OROOO OROOR ORORO ORORR 

ORROO ORROR ORRRO ORRRR 

ROOOO ROOOR ROORO ROORR 

ROROO ROROR RORRO RORRR 

RROOO RROOR RRORO RRORR 

RRROO RRROR RRRRO RRRRR 

Example 7 (Powerball) Powerball is a well-known lottery game in the United 
States. We have 69 white balls in one drum and 26 red balls in the other drum. 
We take 5 white balls and 1 red. To simplify, let us assume that we are considering 
only the drum with white balls. The combination can be used here as follows: 

. C(69, 5) = 69! 
5! ·  (69 − 5)! = 11,238,513. 

This means that we have more than 11 million possibilities. 

Example 8 (Dice) We have three dice. When we roll all three, we get three values 
from one to six each. How many combinations are possible when we assume that we 
roll all three dice at once? The answer is as follows: 

. C(6, 3) = 
(6 + 3 − 1)! 
3! ·  (6 − 1)! = 

5! ·  5 · 6 · 7 · 8 
6 · 5! = 56. 

Example 9 (Pairs) We can combine the above methods to calculate the number of 
possibilities for more specific cases. Let us calculate how many possibilities we have 
to get a pair of Kings. First of all, we need to calculate how many possibilities of 
card combinations we have: 

. C(52, 5) = 2,598,960. 

Let us assume that we want to get two kings. We have a set of thirteen cards of each 
color. We have four kings, each of different color. We get five cards in total. To get 
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only a pair, we need to get the other three cards from a set of twelve, so we do not 
get a third king. We can calculate it as follows: 

. 13 · C(4, 2) · C(12, 3) · C(4, 1)3 = 1,098,240. 

We have more than a million possible card arrangements to get a pair in the poker 
game. 

2.2.2 Conditional and Independent Probability 

For now, we know how to calculate the combinations possibilities in some gambling 
games. It is time to learn to calculate the win possibilities. As mentioned above, . �
is the set of all possible combinations. In the last example, we calculated the number 
of combinations to get a pair in the poker game, but what is the probability of getting 
a pair in general? Let . A be an event of getting a pair, so the probability would be as 
follows: 

. P(A) = 
1,098,240 

2,598,960 
≈ 0.4226. 

There are more than 40% chances to get a pair at poker. Let us compare it to the odds 
of getting a full house (event . B): 

. P(B) = 3744 

2,598,960 
≈ 0.0014. 

This means that the probability of getting the full house is below 1%. It sounds 
reasonable, as it is logically much harder to get a full than a pair. In probability 
theory, we can calculate not only the probability of just an event. There are more 
sophisticated examples where probability can be calculated. If we roll a dice, we 
have 50%/50% chances to get an even value. Let . A be an event to get an odd value, 
and let .A′ be an event to get an even value. In the case of the event . A, we consider a 
set of values: .1, 3, 5. In .A′ the set is .2, 4, 6. We assume that we know that an event 
.B occurred. It says that the value is greater than . 3. The conditional probability is 
the probability of an event .A when another event occurred. It can be calculated as 
follows: 

.P(A|B) = 
P(A ∩ B) 
P(B) 

. (2.5) 

If .P(A) = 1 2 and .P(B) = 1 2 as in our dice example, we can calculate the proba-
bility of getting an odd value that is greater than . 3 as follows: 
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Fig. 2.4 Independent 
probability example. Two 
events. A, . B and the common 
part of both marked with red 

. P(A|B) = 
1 
6 
1 
2 

= 
1 

3 
. 

The probability of the event. B is equal to. 
1 
2 since we have the set of three elements of 

six possible dice values. The probability .P(A ∩ B) is the subset of both sets . A and 
. B. This set has one element . 5. This means that the probability .P(A ∩ B) = 1 6 . That 
is why we have the probability of . 1 3 to get an odd value if we know that the value of 
thrown dice is higher than 3. 

Other important terms in probability theory are independent probabilities (Fig. 2.4). 
Two probabilities.P(A) and.P(B) are independent when.P( A|B) and.P( A) are equal 
for .P(B) >  0. Let us follow the case presented for conditional probabilities. The 
event . A means that we get an even value. Let event .B be an odd value on the other 
dice. The probabilities of both event .A and event .B are equal . 1 2 . Are these events 
independent? The conditional probability is equal to.P( A|B) = 1 2 . In the given case, 
both events are independent, because.P(A|B) is equal to.P( A) = 1 2 . In other words, 
independent probability is one that is not affected by the other event. It is written as 
follows: 

.P(A ∩ B) = P(A) · P(B). (2.6) 

The last term in this section that we present is the total probability. It makes us 
one step closer to understanding the Bayes theorem that is explained in Chap. 4. Let  
us say that we have a known event. B and a list of events.A1, A2, . . . ,  An where each 
pair of the list excludes each other. Furthermore, the disjunction of each event in the 
list is equal to . 1. If we connect event . B and events .A1, A2, . . . ,  An , we get the total 
probability of event . B that can be calculated as follows: 

. 

P(B) = P(B|A1) · P( A1) + P(B|A2) · P(A2) + . . .  + P(B|An) · P(An) 

= 
n∑

i=1 

P(B|Ai ) · P(Ai ). 
(2.7) 

Example 10 (World Championships) Our national volleyball team qualified for the 
World Championships. Based on bookmakers information, we can group our oppo-
nents into five groups of different types: 
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Fig. 2.5 Total probability 
World Championship 
examples 

• .B|A1—we can win with that team for about 90%, 
• .B|A2—rather win, but for only 70%, 
• .B|A5—hard to say, it is a 50%/50% winning chance, 
• .B|A4—it is more possible to loose rather than win as the chances of winning are 
40%, 

• .B|A4—we probably loose as bookmakers give us only 20% of success. 

When it comes to the number of teams that we can win or loose with we can divide 
it as follows: .A1—35%,.A2—25%,.A3—20%,.A4—15%,.A5—5%. It can be drawn 
as a diagram as shown in Fig. 2.5. 

The question is what our national volleyball team’s chances of winning a game 
are? Let. B be the event of the game won. It is easy to calculate with total probability: 

. P(B) = 0.9 ∗ 0.35 + 0.7 ∗ 0.25 + 0.5 ∗ 0.2 + 0.4 ∗ 0.15 + 0.2 ∗ 0.05 = 0.66. 

It looks as if we had a pretty strong team, as our chances of winning the game are about 
66% high. Total probability can be easily drawn as a tree of all event probabilities. 
The tree for the current example is shown in Fig. 2.6. It consists of .B ′ events that are 
about losing the game. It is easy to see in this figure that the sum of .Ai events is 1 
and the same with the second level leaves where the sum of .B and .B ′ is obviously 
also 1. 

The probability tree is commonly used in economic and financial models. It gives 
an easy-to-understand graph, so calculations of some probabilities are easier to man-
age. We can calculate the probability of a given event or sum of events easily, we just 
need to go through the path from the right to the left and multiply it. To calculate the 
probability of a few events, we need to sum all paths that we want to calculate the 
probability of. 
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Fig. 2.6 Total probability 
tree of the World 
Championship examples 

2.3 Linear Algebra 

Generally, linear algebra is about operations of matrices and is a crucial part of each 
machine learning method. From a programming in Python perspective, there are two 
ways of training machine learning methods. The first is an iterative way in which we 
go through each element in a vector or matrix to calculate the expected result. This 
approach is based on many for or while loops. The second approach is based on 
libraries like numpy that are adjusted and perform much better than any iterative 
implementation. Numpy 1 is a library for numerical computation and is focused on the 
performance of such a function. The difference in performance can even be reached 
more than hundred times, so it is reasonable to use the vectorized approach. 

1 Numpy documentation: https://numpy.org/doc/stable/reference/index.html. 

https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
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Table 2.8 Some numpy matrix/vector building methods 

Sample code Short explanation 

arr = 
numpy.loadtxt(’matrix.txt’) 

Imports a matrix/vector from a text file 

arr = 
numpy.genfromtxt(’matrix.csv’, 
delimiter=’;’) 

Imports a matrix/vector from a CSV file 

arr = numpy.ones((2,3)) Returns a matrix of size.2 × 3 filled with ones 
arr = numpy.zeros((2,3)) Returns a matrix of size.2 × 3 filled with zeros 
arr = numpy.eye(4) Returns a matrix of size.4 × 4 filled with zeros, 

except diagonals where it is filled with ones 

arr = numpy.random.rand(2,4) Returns a matrix of size.2 × 4 or random 
values from 0 to 1 

To create a vector or matrix, we use the numpy.array() method. The method 
returns a numpy array object as in Listing 2.2. 

1 import  numpy  as  np  
2 vector  =  np.  array  ([1  ,2  ,3  ,4])  
3 

4 matrix  =  np.  array  ([[1  ,2]  ,[3  ,4]])  

Listing 2.2 A numpy vector and numpy matrix 

There are a few ways to create a matrix or vector with numpy. We can import it from 
a text or CSV file with methods loadtxt() and genfromtxt(). Some other 
methods can be used to initialize a matrix filled with some values. One of such a 
method is ones() which fills the matrix with values of 1. The size of the matrix 
or vector is given as a parameter. To create an identity matrix, we use the eye() 
method. The last method worth mentioning is rand() which creates a matrix with 
random values, each between 0 and 1. Examples of the mentioned methods are 
shown in Table 2.8. To create a vector, instead of (2,3) as shown in Table 2.8 for 
the method ones(), we use just the second value. It means that if we want to create 
a vector of 3 items, we should use (,3). Numpy library has many more methods 
than those used for matrix creation. There is a set of methods that can be used for 
matrix manipulation. By manipulation we mean operations like value addition. Some 
of such methods are listed in Table 2.9. We can perform many operations on matrices 
and vectors. Let us focus on matrices, as it can be done in the same way or simpler 
on vectors in most cases. The most common operations are addiction, multiplication, 
division, and subtraction. When dealing with fixed values, we can do it in Python 
using the same operators as we do regular math operations. An example is shown in 
Listing 2.3. 

1 import  numpy  as  np  
2 

3 matrix_1  =  np.  array  ([[1  ,2]  ,[3  ,4]])  
4 matrix_2  =  np.  array  ([[5  ,6]  ,[7  ,8]])  
5 

6 matrix_add  =  np.  add  (  matrix_1  ,  matrix_2  )  
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Table 2.9 A few examples of numpy matrix manipulation methods with sample codes 

Sample code Description 

numpy.append(arr,values) Appends values at the end of the matrix arr 

numpy.insert(arr,1,values) Inserts values before index 1 of matrix arr 

numpy.delete(arr,2,axis=0) Deletes row on index 2 of matrix arr 

numpy.delete(arr,3,axis=1) Deletes column on index 3 of matrix arr 

list = arr.tolist() Returns a list 

arr.resize((3,4)) 

7 matrix_add  =  matrix_1  +  matrix_2  
8 

9 matrix_multiply  =  np.  multiply  (  matrix_1  ,  matrix_2  )  
10 matrix_multiply  =  matrix_1  ∗ matrix_2  

Listing 2.3 A few basic operations done on numpy matrices 

For the code shown in Listing 2.3, the first example can be calculated as follows: 

.

[
1 2  
3 4

]
×

[
5 6  
7 8

]
=

[
1 · 5 2  · 7 
3 · 6 4  · 8

]
=

[
5 14  
18 32

]
. (2.8) 

In this example, we use a small matrix of size .2 × 2. In many and now even almost 
all machine learning methods, the matrices are much larger. As mentioned above, 
numpy is optimized to perform well in such cases. Some other operations that can 
be performed using numpy are shown in Table 2.10. The method that may not be 
as easy to understand is the dot() method. It is a kind of multiplication operation, 
but it works differently from the multiply() method. Calculates the value of 
the dot product differently. In Table 2.10 an example of the calculation of the dot 
product is shown. The presented example works for two matrices but behaves like 
multiplying() if one of the parameters is just one number. There are more 
methods in which we perform mathematical operations on matrices. The most popular 
are shown in Table 2.11. The table contains only methods that are used in further 
detail in this book. We have methods that use the matrix as input and returns matrix 
as output. All methods do an operation on each cell in the matrix one by one. The 
method names do exactly what they mean, so no more explanation is necessary here. 
The only three that need the second parameter are min(), max() and mean(). 
The axis parameter is about the number of axis where the minimum, maximum or 
mean value is returned. 

The last thing we describe in this section are the properties of numpy arrays. There 
are two listed in Table 2.12 that are important in our opinion. The first gives the total 
number of elements. If we have a matrix of size .2 × 5, the size property returns 10. 
The property shape returns .2 × 5 for the same example. 
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Table 2.10 Numpy matrices operations with examples 
Sample code Example 

matrix = numpy.add(matrix1,matrix2) . 

[
1 2  

3 4

]
×

[
5 6  

7 8

]
=

[
1 + 5 2  + 7 
3 + 6 4  + 8

]
=

[
6 9  

9 12

]

matrix = numpy.subtract(matrix1,matrix2) . 

[
1 2  

3 4

]
×

[
5 6  

7 8

]
=

[
1 − 5 2  − 7 
3 − 6 4  − 8

]
=

[
−4 −5 

−3 −4

]

matrix = numpy.multiply(matrix1,matrix2) . 

[
1 2  

3 4

]
×

[
5 6  

7 8

]
=

[
1 · 5 2  · 6 
3 · 7 4  · 8

]
=

[
5 12  

21 32

]

matrix = numpy.divide(matrix1,matrix2) . 

[
10 2 

9 4

]
×

[
2 2  

3 3

]
=

[
10/2 2/2 

9/3 4/3

]
=

[
5 1  

3 1.33

]

matrix = numpy.dot(matrix1,matrix2) . 

[
1 2  

3 4

]
×

[
5 6  

7 8

]
=

[
1 · 5 2  · 7 
3 · 6 4  · 8

]
=

[
5 14  

18 32

]

Table 2.11 Commonly used numpy methods 

Sample code Example 

matrix = numpy.sqrt(matrix1) Calculates square root of each element 

matrix = numpy.sin(matrix1) Calculates the sinus value of each element 

matrix = numpy.log(matrix1) Calculates natural logarithm of each element 

matrix = numpy.abs(matrix1) Absolute value of each element in the array 

matrix = numpy.ceil(matrix1) Rounds up to the nearest int 

matrix = numpy.floor(matrix1) Rounds down to the nearest int 

matrix = numpy.round(matrix) 

matrix = numpy.mean(arr,axis=0) Returns mean along specific axis 

sum = numpy.sum(matrix1) Returns sum of arr 

min = numpy.min() Returns minimum value of arr 

max = numpy.max(axis=0) a 

sorted_matrix = numpy.sort() b 

Table 2.12 Other useful numpy properties 

Property name Description 

arr.size Returns the number of elements 

arr.shape Returns the shape of a matrix 



2.4 Differential Calculus 51 

2.4 Differential Calculus 

The most common method to optimize and find the best possible model uses gra-
dients. To understand gradients, we need to explain the limits and derivatives. One 
of the best explanations for what limits are can be found in [ 1]. This is our best 
prediction of a point that we did not observe. The formal definition of the limit is the 
following equation: 

. lim 
x→c 

f (x) = L , (2.9) 

where .x → c means that . x is coming close to . c. . L is our prediction of . f (x). Addi-
tionally, we assume that since it is a prediction, there is an error margin .ε >  0, so  
that there is a range margin .δ >  0 that for each .xi within .0 < |xi − c| < δ  we have: 

.| f (x) − L| < ε. (2.10) 

Let us draw an example for a better understanding. In Fig. 2.7 we can see a function 
. f (x) = 1 + 1 x marked blue. In red, we mark the error margins . ε. The middle of the 
margin. ε is marked black.y = 1. Let.x → x0 where.x0 = 50. The error margin shown 
in Fig. 2.7 is set to .ε = 0.2 and .δ = 30. The limit would look as follows: 

. lim 
x→50 

f (x) = 1 + 
1 

x 
. 

If we can check the limit for .x0 directly, we just assign to . x the value of . x0: 

. lim 
x→50 

f (x) = 1 
1 

50 
. 

Now we can check how small the error margin. ε can be. We assumed. ε to be.0.2 for 
now: 

Fig. 2.7 Limits example for 
.y = 1 + 1 x 
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. 

|1 + 
1 

x 
− 1 

1 

50
| < 0.2, 

| 1 
x 

− 
1 

50
| < 0.2. 

The range margin . δ is set in our case for .30. We can check if . ε is set correctly for 
given . δ by checking the boundary values: 

. 
|0.05 − 0.02| < 0.2, 

|0.0125 − 0.02| < 0.2. 

For both boundaries, the inequality is true. We could even reduce the error margin 
. ε to .0.05 and it would still be true. A more interesting example would be .x → ∞. 
This means that . x is increasing to infinity. In other words, . 1 x will gradually become 
closer to . 0. In such a case we assume that it is . 0, so:  

. lim 
x→∞ 

1 + 
1 

x 
= 1. 

Limits are also very useful when facing a zero-divided problem. We know that we 
cannot calculate the function. f (x) = 1 + 1 x for .x = 0, because we cannot divide by 
zero. In this case, we can assume that . x is going to be close to 0 and is positive: 
. 
1 
2 , 

1 
4 , 

1 
8 , 

1 
16 , . . . ,  1 128 , . . ., but it never reaches or goes below 0. In this case, we mark 

it with a .+ like: 
. lim 
x→0+ 

1 + 
1 

x 
= ∞. 

We can draw the function as shown in Fig. 2.8. For . 1 2 and . 
1 
4 , it is, respectively: 

Fig. 2.8 Limits example for 
.limx→0+ y = 1 + 1 x 
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. 

lim 
x→0+ 

f

(
1 

2

)
= 1 + 

1 

2 
= 3, 

lim 
x→0+ 

f

(
1 

4

)
= 1 + 

1 

4 
= 5. 

The closer we are to 0 the higher the value we get. That is why 

. lim 
x→0+ 

1 + 
1 

x 
= ∞. 

The same scenario holds for negative values getting closer to 0: 

. lim 
x→0− 

1 + 
1 

x 
= −∞. 

We presented examples for both .x → 0+ and .x → 0− in Fig. 2.8. 

2.4.1 Derivatives 

Derivatives are about changes in function. We can use derivatives to see how much 
the function values change from one point to another. Mathematically, it can be 
presented as follows: 

. f ′(x) = lim 
dx→0 

f (x + dx) − f (x) 
dx  

, (2.11) 

where . f ′(x) is the derivative of the function, .dx  is the change between points. The 
change can also be found in other publications such as.δx . It is the difference between 
two points: 

.dx  = x − x0. (2.12) 

A graphical interpretation of the derivative can be drawn like shown in Fig. 2.9. The  
derivative can also be interpreted as the tangent .tan of the .∠CAB  angle shown in 
Fig. 2.9: 

. tan�CAB  = 
f (x0 + dx) − f (x) 

dx  
. (2.13) 

Based on Eq. 2.11, we can calculate the derivative . f (x)′ by adding .x2 + 2x to the 
equation: 
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Fig. 2.9 Derivative 
definition 

. 

f (x)′ = lim 
dx→0 

f (x + dx) − f (x) 
dx  

= lim 
dx→0 

(x + dx)2 + 2(x + dx) − (x2 + 2x) 
dx  

= lim 
dx→0 

x2 + 2xdx  + dx2 + 2x + 2dx  − x2 − 2x 
dx  

= lim 
dx→0 

2xdx  + dx2 + 2dx  
dx  

= lim 
dx→0 

dx(2x + dx  + 2) 
dx  

= 2x + 2. 

We assumed that the change is 0. For any change different than 0 we get . f (x)′ = 
2x + 2 + dx , where.dx  is the change/error rate. This means that the lower we go, the 
lower the error rate. Usually, the derivatives are calculated for a small change, because 
the change is different at any . x0. In Fig.  2.9 the change will be different for . x0 = 3 
and for.x0 = 5, because the blue line isn’t straight. As shown in Eq. 2.11.dx  → 0, it  
should be a small number like 0.1 or less. Instead of calculating the derivative from 
Eq. 2.11 every time, there are some commonly used precalculated derivatives which 
simplify the calculations. The most popular derivatives can be found in Table 2.13. 

2.4.2 Gradients 

The derivatives show the next step of our function at some point. This means that we 
can find the maximum or minimum much faster. The higher the derivative, the more 
the value of the function increases. Gradients use derivatives to show the direction of 
function increase of more than one variable. It is marked with.∇ f (x1, x2). Gradients 
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Table 2.13 Basic derivatives functions 

Function name Derivative 

Constant function (. c) . (c)′ = 0 
Power function,.α 
= 0 . (xα )′ = αxα−1 

Square root function, where.α = 1 2 . (
√
x)′ = 1 

2
√
x 

Exponential function.α >  0, a 
= 1 . (ax )′ = ax ln a 
Exponential function with base.e . (ex )′ = ex 

Logarithm function,.α >  0, a 
= 1 . (loga x)
′ = 1 

x ln a 

Natural logarithm, where.a = e . (ln x)′ = 1 x 
sines function . (sin x)′ = cos x 
cosines function . (cos x)′ = −  sin x 
tangent function . (tg x)′ = 1 

cos2 x 
= 1 + tg2 x 

cotangent function . (ctg x)′ = −  1 
sin2 x 

= −(1 + ctg2 x) 
arcsin function . (arcsin x)′ = 1√

1−x2 

arccos function . (arccos x)′ = −  1√
1−x2 

arctg function . (arctg)′ = 1√
1−x2 

arcctg function . (arcctg)′ = −  1 
1+x2 

Hiperbolic sines function . (sh x)′ = ch x 
Hiperbolic cosines function . (ch x)′ = sh x 

are used in several classification methods to find the local minimum or maximum 
of a function. Local minimums are part of the learning process, and the faster the 
algorithm finds them, the better. Gradients make it possible to find them much faster 
than using many other methods. Let us take an example of the function. f (x1, x2) = 
3x2 2 + 2x2. It is drawn in Fig. 2.10. The function is shown only for values of . x1, x2 
between .−10 and 10. The three-dimensional plot is divided into rectangular parts 
that are colored differently. This is done to better understand the concept. The colors 
represent the value of. y like is done with temperatures. The blue rectangles are where 
the value is low. Yellow rectangles have a higher value than blue rectangles, and the 
highest values are marked in red. A gradient of function with two input variables 
(two features) and one output (label/class) looks like: 

.∇ f (x1, x2) =
(

f (x1, x2) 
dx1 

, 
f (x1, x2) 
dx2

)
. (2.14) 

Keep in mind that the commonly used nomenclature is . f (x, y) where the output is 
. z, but we changed it to comply with the nomenclature of pattern recognition classifi-
cation methods. The fraction . 

f (x1,x2) 
dx1 

means that we take a derivative of the function 
. f (x1, x2), but we consider.x1 as a variable on which we calculate the derivative. The 
other variables are handled as a constant . c. This means that in the case presented, 
a gradient is a vector of two derivatives. If we calculate the derivatives for both 
variables of the function . f (x1, x2) = 3x2 1 + 2x2 the gradient is as follows: 
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Fig. 2.10 Function.3x2 1 + 2x2 used in gradient example 

Table 2.14 Gradient calculation of function. f (x1, x2) = 3x2 1 + 2x2 
.x1 .x2 . 

f (x1,x2) 
dx1 

. 
f (x1,x2) 
dx2 

. ∇ f (x1, x2) = 
(2x1, 1) 

0 0 0 1 (0, 1) 

1 1 2 1 (2, 1) 

2 2 4 1 (4, 1) 

3 3 6 1 (6, 1) 

. ∇ f (x1, x2) = (2x1, 1). 

This means that if we move on the.x1 axis, the value will decrease or increase, but if 
we move on the second axis, nothing changes. It makes sense if we look at the plot 
in Fig. 2.10. Calculate the gradient for a few values of .x1 and. x2. In Table 2.14 a few  
gradients of the same function are calculated. We see that the value of .x1 increases 
when the value of.x2 does not change at all. The gradient has higher values when the 
change is bigger. It has a 0 at the function’s local maximum. 

2.5 Fuzzy Logic 

In this section we explain the basics of fuzzy logic. We use it in the clustering chapter. 
It consists of two main terms: membership function and fuzzy set. Fuzzy logic is 
about perception of not well-precision terms. To give just a simple example. What 
does it mean that someone is tall? Everyone will give a different answer. There are 
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Fig. 2.11 Weather 
perception example 

plenty of real-world examples of fuzzy logic usage. Fuzzy logic is mapping those 
problems to numbers that we can use in machine learning methods. 

Example 11 (Weather) Let’s take the weather. If someone says it is warm, then 
what does it really mean? Is it 70 . ◦F/30 . ◦C or is it already hot? Each person has a 
different perception and for someone who lives in Scandinavia it could be already 
hot, but for someone who lives in India it would be just warm. The possible options 
of interpretation are called the universe of discourse. Let us formalize it. If we say 
that the temperature outside is 70 . 

◦F/30 . 
◦C each person can give a note on the scale 

from. 0 to.10 of how warm it is (or from. 0 to. 1). Let us take just an individual for now. 
We can ask for the perception of temperatures between 8 and 40 with an interval of 
4. It could look like it is shown in Fig. 2.11. In this case .28 ◦C would be the most 
preferable temperature in case of warm conditions. 

Let the temperatures be a set.X and the warm perception a fuzzy set. A. The function 
that assigns a value from set .X to a value from set . A is called membership function 
.μA(x): 

.μA : X → [0, 1]. (2.15) 

We have only three possibilities of values that the membership function can assign 
to . x : 

1. .μA(x) = 1 means that . x is fully a member of . A; .x ∈ A, 
2. .μA(x) = 0 means that . x is not a member of . A; .x /∈ A, 
3. .0 < μA(x) <  1 means that . x is partially a member of . A. 

In Example 11 the set. X contains values like:.X = [8, 12, 16, 20, 24, 28, 32, 36, 40]. 
The fuzzy set . A has a special notation that is unique. The general equation of fuzzy 
set . A is: 

.A = 
n∑

i=1 

μA(xi ) 
xi 

. (2.16) 
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For Example 11 is s follows: 

. A = 
0 

8 
+ 

0.2 

12 
+ 

0.5 

16 
+ 

0.7 

20 
+ 

0.9 

24 
+ 

1 

28 
+ 

0.8 

32 
+ 

0.6 

36 
+ 

0.3 

40 
. 

It is a specific type of notation as we have a membership function value at the top 
and the.xi of set. X at the bottom. It cannot be divided as it is done in regular fractions 
as it is only a representation of the relation of perception (.[0, 1]) to the real-world 
values . X . 

Membership function shown in Fig. 2.11 is custom and applies only for exact 
example. We have several well-known membership functions that are commonly 
used. A function that responds to a non-fuzzy set is: 

.μA(x) =
{
1, if x = x 
0, if x 
= x 

. (2.17) 

It is called a singleton membership function. Some popular membership functions 
are presented in Fig. 2.13. In Fig.  2.13a Gaussian membership function is shown. 
The temperature example that we mentioned above can be an example of a fuzzy set 
with a Gaussian membership function. In an ideal case, it would look like a Gaussian 
membership function. Another popular one is the membership function of types (see 
Fig. 2.13b). It looks like a logistic function. It is not a rule, but this kind of function 
is commonly used in cases where we have values that are close to. a or. c as we had in 
Example 5. The membership function shown in Fig. 2.13c is similar to the Gaussian 
membership function. It would be sharper if we could leave it in case of a fuzzy set. 
It is used also in similar cases like it is in the Gaussian membership function. The 
last corresponds to a situation in which we have a stable assignation to most values 
of . x , but at some point . a it stops being valid and the membership drops to 0. 

2.6 Dissimilarity Measures 

This section is related to the measures of similarities between objects. When we take 
two objects, we can measure the similarity of both objects using features.xi1 and.xi2. 
To be precise, it is the measure of dissimilarity known as .ρ(X ), where .X is a set 
of feature vectors. In the mathematical approach, a dissimilarity measure needs to 
follow the steps: 

• .∀xr∈X ρ(xr , xr ) = 0, 
• .∀xr ,xs∈X,r 
=sρ(xr , xs) = ρ(xr , xs), 
• .ρ(xr , xs) = 0 ⇔ xr = xs , 
• .∀xr ,xs ,xt∈X,r 
=s 
=t ρ(xr , xs) ≤ ρ(xr , xs) + ρ(xs, xt ), 

where.xr , xs, xt are features. The dissimilarity measure is also known as the distance 
measure.d(xr , xs). The most popular measure is the Euclidean distance. The generic 
equation is as follows: 
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Fig. 2.12 Three objects 
(cars) that we measure 
different dissimilarity 
methods on: Porsche 
Panamera marked as a circle, 
Toyota Corolla marked as a 
square, Ford Mondeo 
marked as a triangle 

.ρMin(xr , xs) =
√√√√

d∑

i=1 

(xri  − xsi )2. (2.18) 

It is also known as the Minkowski distance. In the above equation. d is the dimension 
number. An exemplary method that calculates it is shown in Listing 2.4. To simplify 
the process, let’s assume that we have two features only (.d = 2): 

.ρMin(xr , xs) =
√

(xr1 − xs1)2 + xr2 − xs2)2. (2.19) 

Example 12 (Cars) Let us take three different cars: Toyota Corolla (. xt ), Ford Mon-
deo (.x f ), and Porsche Panamera (. xp). For each car, we take two features: the acceler-
ation time to 100 km/h and the fuel consumption per 100 km. It is shown in Fig. 2.12. 

The distances between each pair of cars can be calculated like following: 

. ρ(xp, xt ) =
√

(4.2 − 10.1)2 + (15 − 5.2)2 ≈ 11.44 

. ρ(xp, x f ) =
√

(4.2 − 7.9)2 + (15 − 10.0)2 ≈ 6.22 

. ρ(xt , x f ) =
√

(10.1 − 7.9)2 + (5.2 − 10.0)2 ≈ 5.28 

Based on the calculations we know that Ford Mondeo is more like Porsche Panamera, 
even it sounds weird. The most similar cars are Toyota Corolla and Ford Mondeo. 
We should not take this comparison seriously, as comparing Corolla with Panamera 
sounds unreasonable for someone who is interested in cars. The Euclidean distance 
can be easily calculated using Python as shown in the Listing 2.4. 
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Fig. 2.13 Few popular membership functions 
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Table 2.15 Popular distance metrics 

Measure name Equation 

Manhattan distance .ρMan(xr , xs ) = ∑n 
i=1 |xri  − xsi | (2.25) 

Chebyshew distance .ρCh(xr , xs ) = max1≤i≤n |xri  − xsi | (2.26) 
Frechét distance .ρ(xr , xs ) = ∑d 

i=1 
|xri−xsi | 
1+|xri+xsi 

1 
2i 

(2.27) 

Canberra distance .ρ(xr , xs ) = ∑d 
i=1 

|xri−xsi | |xri+xsi | (2.28) 
Post office distance . ρpos(xr , xs ) =

{
ρMin(xr ,0)+ρMin(0,xs ), for xr 
=xs , 

0, for xr=xs 
(2.29) 

Bray-Curtis distance [ 2] .ρbc(xr , xs ) =
∑d 

i=1 |xri−xsi |∑d 
i=1(xri−xsi ) 

(2.30) 

1 math  .  sqrt  (  abs  ((  int  (x  [0])−int  (v  [0])  )  ∗( int  (x  [0])−int  (v  [0])  )+(  int  (x  [1])−int  
2 (v  [1])  )∗( int  (x  [1])−int  (v  [1])  )))  

Listing 2.4 Euclidean distance calculated with Python 

We have more than just the Euclidean distance. The most popular distances can 
be found in Table 2.15. The general approach to the calculation for each distance 
is the same as in our previous example. For better understanding, we calculate the 
Manhattan distance for the previous example. This distance is also known as the city 
block distance or the taxi distance. For two objects it can be calculated as follows: 

.ρMan(xr , xs) = |xr1 − xs1| + |xr2 − xs2|. (2.24) 

. ρMan(xp, xt ) = |4.2 − 10.1| + |15 − 5.2| =  15.1 

. ρMan(xp, x f ) = |4.2 − 7.9| + |15 − 10.0| =  8.7 

. ρMan(xt , x f ) = |10.1 − 7.9| + |5.2 − 10.0| =  7 

Manhattan distance and Minkowski distance results for our car example are similar. 
The numbers are different, but the relationship between each distance is almost the 
same. We can calculate the values of each distance shown in Table 2.15. It is not the 
full list of distances. More metrics can be found in [ 3– 5]. 

For Further Reading 

1. James G, Witten D et al (2023) An introduction to statistical learning: with appli-
cations in Python. Springer 

2. Liu Y (2024) Python machine learning by example: unlock machine learning best 
practices with real-world use cases, 4th edn. Packt 
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3. Maurits N, Ćurčić-Blake B (2023) Math for scientists. Refreshing the essentials. 
Springer 

4. Bruce P, Bruce A, Gedeck P (2020) Practical statistics for data scientists, 2nd edn. 
O’Reilly 

5. Kar R, Le D-N, Mukherjee G et al (2023) Fuzzy logic applications in computer 
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Chapter 3 
Unsupervised Learning 

Unsupervised methods are based on data sets that do not contain labels. This means 
that the algorithms are learning only using feature vectors. This group of learning 
methods is also known under different names. It depends on the context where it is 
used. Unsupervised learning can be called learning without a teacher. It is the opposite 
to learning with a teacher, supervised learning. Unsupervised learning is also known 
as partitioning, segmentation, typology, numerical taxonomy, or clustering. The last 
term is one of the most commonly used, aside from unsupervised learning. A cluster 
is a set of elements/objects of the same label. Compared to supervised methods, the 
label used here is based on similarities between elements of each cluster. It means 
that some elements are more similar to other elements than to other elements. In other 
words, the goal of the clustering method is to find groups of objects that are most 
similar to each other. It is important to mention that if we say label in the context 
of unsupervised learning, we mean the testing part of a method. Labels are assigned 
during the learning phase. Each element/object belongs to a group. Each group has 
its own label that is different for each group. There are three major types of clustering 
methods: distributed, density-based, and hierarchical. Distributed methods are based 
on data distribution in the feature space. The second type is about the density or 
easier neighborhood elements in feature space. Hierarchical clustering is based on 
the hierarchy of elements in the training data set. This kind of method creates a 
dendrogram as output. Apart from the methods we describe in this chapter, there are 
a few terms that need more explanation first. Sometimes it can happen that some 
elements do not fit into any cluster. Such elements are known as noise, outliers, or 
errors. A popular approach is to find just one cluster of elements that are most similar 
to each other. Filter the outliers from the data set. The density-based clustering method 
explained later in this chapter works in this way. In the next section, we explain 
how to measure the quality of the clustering method using different quality metrics 
based on heterogeneity, homogeneity, and indices. A separate topic is the number of 
clusters that we want. There is a way to get the best number of clusters . k based on 
the computation cost and the mentioned metrics. In pattern recognition, clustering 
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methods have many use cases. One of the most popular is image segmentation. In the 
last section of this chapter, we show how to implement a simple image segmentation 
method using the k-means clustering method. 

3.1 Distributed Clustering 

In this section, we explain a few methods of distributed clustering. We have divided 
those into three groups: k-means, fuzzy, and possible. Most distributed clustering 
methods are extended or modified algorithms of the methods presented in this section. 
We start with k-means, which is the most known clustering method. More complex 
methods are presented in the next two sections. 

3.1.1 K-Means 

K-means is also known as a hard c-means algorithm (HCM) and is one of the simplest 
clustering methods. The goal of this algorithm is to assign each element of the training 
data set to a cluster in a binary way. This means that an element can be fully assigned 
to only one cluster. This is a strict (hard) type of assignation. All k-means-based 
methods are iterative algorithms and consist of few parts that are the same in each 
case: 

1. choose the entrance cluster centroids, 
2. calculate the membership matrix . U , 
3. calculate new centroids matrix . V , 
4. calculate the difference between the previously calculated membership matrix. U

and the new calculated in the current iteration. 

Each step is described in the following subsections. 

Entrance cluster centroids 

This step is done only once. In most methods, the center of each cluster needs to 
be chosen before the algorithm starts. Such a center point is also called a centroid. 
The two most popular ways to do it are to set it randomly or set fixed values. Cluster 
centers should be chosen from values that are between the minimum and maximum 
values of each feature. We rarely have the same cluster centers that are at the entrance 
and when the algorithm finishes the calculations. We can set random centers as shown 
in Listing 3.1.
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1 d e f s e l e c t _ c e n t e r s  (  )  :  
2 " " "  
3 T h i s m  e t h o d s e l e c t s r  a  n  d  o  m  l  y c e n t r o i d s  
4 

5 :  r  e t u r n  : c e n t r o i d s  
6 " " "  
7 r e t u r n n  p  .  r a n d o m  .  r a n d  (  g  r  o  u  p  s  , l e n  (  d  a t a _ s e t  [  0  ]  )  )  

Listing 3.1 Random centroids generation 

We set random centers based on the feature space that is stored in __space. It  
represents the minimum and maximum values of each feature. In the Listing 3.1, 
the feature space is defined as two-dimensional. A random centroid is generated for 
each group in each iteration. 

Membership matrix . U

The second part of each algorithm is the calculation of the membership matrix . U . 
This part needs cluster centroids to calculate the matrix . U . The previous step of 
centroid generation can be used in most methods in the same way. The membership 
matrix calculation step is slightly different in each clustering method. The matrix. U
consists of . c rows and. k columns, where. c is the number of groups/clusters we want 
to have and . k is the number of elements in the training data set. We iterate through 
. i in rows and . j through columns. An element of .U is .μi j . We already used the 
symbol . μ in the section about fuzzy sets. We call it a membership function. Ideally, 
it corresponds to clustering as we measure whether or not each object is a member 
(assigned) of a group. Let us assume that we want to distinguish only two groups for 
now. The membership/assignation can be a value in the range of 0–1. In the case of 
k-means, it is the value of 0 or 1. A matrix.U with two groups and five elements can 
look as follows: 

. U =
[
0 1 0 1 0
1 0 1 0 1

]
.

It means that the object .x1 is assigned to the group .c = 2, .x2 to the group .c = 1, 
and so on. We calculate the membership matrix for each object in the training data 
set. In the current example, there are only six objects. The value of the membership 
function can be calculated in HCM as shown in Eq. 3.1. 

.μ
(t)
ik =

{
1 if d(xk, vi ) < d(xk, v j ), for each j �= i,

0 in other case.
(3.1) 

The assignation is done in a simple way. For each object. xk , we measure the distance 
from it to each group center. The closest distance wins. As shown in the Listing 
3.2 we set the variable minimal_distance the distance of the object . x and the 
centroid of the first cluster. The group_id is the id to which the object. x is assigned. 
It may change during the for loop if the distance between . x and other centroids.
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1 d e f c a l c u l a t e _ u  (  x  , c e n t e r s  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s m e m b e r s h i p o  f t  h  e o b j e c t x  .  
4 

5 :  p  a  r  a  m x  : o b j e c t t h a t w  e w a n t t  o s  e  t t  h  e c  l  u s t e r  
m e m b e r s h i p i  d  

6 :  p  a  r  a  m c e n t e  r s  : c  e n t r o i d s  
7 :  r  e t u r n  : M  e m b e r s h i p v e c t o r  
8 " " "  
9 i f c a l c u l a t e _ d i s t a n c e  (  x  , c  e  n  t e r s  [ 0 ] ) <  

c a l c u l a t e _ d i s t a n c e  (  x  , c e n t e r s  [  1  ]  )  :  
10 r e t u r n [ 1  , 0  ]  
11 e l s e  : 
12 r e t u r n [ 0  , 1  ]  

Listing 3.2 HCM membership matrix calculation 

The value 1 is assigned to the group_id in line 8. 

New centroid .vi calculation 

Centroids are calculated in a similar way in most methods. The number of groups. ci
is the same as the number of centers . vi , where .i = 1, . . . , c: 

.V = [v1, v2, . . . , vc]. (3.2) 

Each group center is calculated separately as follows: 

.vi =
∑M

k=1 μ
(t)
ik xk∑M

k=1 μ
(t)
ik

(3.3) 

We use the assignation .μ (u) and the feature vector .xk (__data_set) to calcu-
late the new group centers. The code that calculates new centers is presented in 
Listing 3.3. 

1 d e f c a l c u l a t e _ n e w _ c e n t e r s  (  u  )  :  
2 " " "  
3 T  h  i  s m e t h o d c  a  l  c  u  l  a  t  e  s n  e  w c  e  n  t  r  o  i  d  s o  f e  a  c  h c l u s t e r  .  
4 

5 :  p  a  r  a  m u  : m  e  m  b  e  r  s  h  i  p m a t r i x  
6 :  r e t u r n  : n  e  w c e n t e r s  
7 " " "  
8 n e w _ c e n t e r s = [  ]  
9 f o r c i  n r a n g e  (  g r o u p s  )  :  

10 n e w _ c e n t e r s  .  a p p e n d  (  
11 n  p  .  d i v i d e  (  n  p  .  d  o  t  (  n  p  .  s q u a r e  (  n  p  .  a  r  r  a  y  (  u  )  [  :  , c  ]  )  ,  

d a t a _ s e t  )  , n  p  .  s u m  (  n  p  .  s q u a r e  (  n  p  .  a  r  r  a  y  (  u  )  [  :  , c  ]  )  )  )  )  
12 r e t u r n n e w _ c e n t e r s  

Listing 3.3 Centers calculation 

As Eq. 3.3 is a bit more complex compared to the previous ones used in this chapter, 
we divided the loop in line 3 into two parts: numerator as u_x_vector and denom-
inator as u_scalar. Both variable names indicate the type of value they contain 
and the variables involved. We have two loops, one to go through all centroids that 
we need to calculate, and the second loop to go through all objects in our training 
data set.
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Difference measure 

We calculate the membership matrix from the previous step as well as new cen-
troids in each iteration until the differences between the changes in both are small 
enough. The differences calculated to stop the loop are calculated as it is shown in 
Listing 3.4. 

1 d e f c  a  l  c  u  l  a  t  e  _  d  i  f  f  e  r  e  n  c  e  s  (  n e w _ m e m b e r s h i p  , m e m b e r s h i p  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e d  i f f e r e n c e s b  e  t w e e n t  h  e  

o  l  d a  n  d n  e  w m e m b e r s h i p m a t r i x  .  
4 

5 :  p  a  r  a  m n  e  w  _  m  e  m  b  e  r  s  h  i  p  : n  e  w m e m b e r s h i p m a t r i x  
6 :  p  a  r  a  m m e m b e r s h i p  : c u r r e n t m e m b e r s h i p m a t r i x  
7 :  r  e t u r n  : t  h  e d i f f e r e n c e b  e  t  w e e n t  w  o m e m b e r s h i p  

m a t r i c e s  
8 " " "  
9 r e t u r n n p  .  s u m  ( n  p .  a b s  (  n  p  .  s  u  b  t  r  a  c  t  (  m e m b e r s h i p  ,  

n e w _ m e m b e r s h i p  )  )  )  

Listing 3.4 Differences calculation 

The difference level at which we stop the loop is set depending on the data set and 
feature space. In our example, which we show next, it is set to 0.5. To calculate the 
differences, we take the current membership matrix and the newly calculated ones 
and compare both rows and columns. 

Example 1 (Aircraft clustered binary) Let us take an example of aircraft to explain 
how k-means clustering works. We collected ten popular aircrafts in Table 3.1. We  
have four columns: the name of the aircraft, the distance the aircraft can reach in one 
full tank, the number of seats, and the type of the aircraft. The first and last columns 
are used for the description only. The second and third columns are our features. 
We can plot them to see how easily we can divide them into clusters. A plot of the 
range of distances from the aircraft and seat count is shown in Fig. 3.1. There are two 
groups, one in the top right part of the plot and one in the bottom left part of it. It 
looks like an easy task to see that we have two types of aircraft: one with small seat 

Table 3.1 Aircraft divided by type, range and seats count 

Aircraft name Distance range (km) Seats count Aircraft type 

Cesna 510 Mustang 1940 4 Private jet 

Falcon 10/100 2960 9 Private jet 

Hawker 900/900XP 4630 9 Private jet 

ATR 72-600 1528 78 Medium size aircraft 

Bombardier Dash 8 Q400 2040 90 Medium size aircraft 

Embraer ERJ145 XR 3700 50 Medium size aircraft 

Boeing 747-8 14,815 467 Jet airliner 

A380-800 15,200 509 Jet airliner 

Boeing 787-8 15,700 290 Jet airliner 

Boeing 737-900ER 6045 215 Jet airliner
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Fig. 3.1 Aircraft example clustering 

count and short distance range, and the second which are huge aircraft that can fly 
long distances. Using k-means, the steps we have described would look as follows: 
Before moving on to the first step of the method, we should normalize the data set 
to move the data to a common scale for each feature (Table 3.2a). In the first step 
of the method, we need to generate some random centroids. Let us assume that we 
have two centers randomly chosen for .v1 = (0.2, 0.2) and .v2 = (0.5, 0.5). As we  
can see, one centroid is quite close to a group of objects in the bottom-left corner. 
The second centroid is almost in the middle of the feature space (see Fig. 3.1b). Let 
us calculate the membership matrix with both centroids. For the first object .x (0), we  
calculate the following distances: 

. d(x (0), c1) = d((0.0078, 0.1235), (0.2, 0.2)) = 0.20678,

.d(x (0), c2) = d((0.0078, 0.1235), (0.5, 0.5)) = 0.6196.
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Table 3.2 Aircrafts data set normalized 

Aircraft name Distance range (km) Seats count 

Cesna 510 Mustang 0.007859 0.123567 

Falcon 10/100 0.017682 0.188535 

Hawker 900/900XP 0.017682 0.294904 

ATR 72-600 0.153242 0.097325 

Bombardier Dash 8 Q400 0.176817 0.129936 

Embraer ERJ145 XR 0.098232 0.235669 

Boeing 747-8 0.917485 0.943631 

A380-800 1.000000 0.968153 

Boeing 787-8 0.569745 1.000000 

Boeing 737-900ER 0.422397 0.385032 

The distance is shorter for the first centroid. It means that we should binary assign 
the membership of the first object into the first cluster. A different case is for object 
. x7: 

. d(x (0), c1) = d((0.9174, 0.9436), (0.2, 0.2)) = 1.03333,

. d(x (0), c2) = d((0.9174, 0.9436), (0.5, 0.5)) = 0.60918.

This object should be assigned to the second cluster. After going through all the 
objects in the first iteration, we get the membership matrix as 

. U1 =
[
1 1 1 1 1 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0

]
.

The new centroids need to be calculated in the next step. Using Eq. 3.3, we get new 
centroids: 

. v1 =
[
0.47151277 1.06993631

]
6

= [
0.07858546 0.17832272

]
,

. v2 =
[
2.90962672 3.29681529

]
4

= [
0.72740668 0.82420382

]
.

In the next iterations, the membership matrix does not change, but the centroids still 
move. The reason for the absence of change is a very simple example and the small 
data set used. Finally, we get 

. v1 = [
0.12770138 0.20785259

]
,

.v2 = [
0.82907662 0.97059448

]
.
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The final centroids are given in Fig. 3.1c. The centroids moved from the first position, 
especially the second centroid moved from about the middle of the space into the 
right-top corner. This seems logical because one of the groups of objects is placed 
in this area. 

3.1.2 Fuzzy C-Means 

The main concept of fuzzy clustering is to assign objects to a cluster using fuzzy logic. 
In the previous method, the column of the membership matrix contains one positive 
value, and the rest is filled with zeros. In fuzzy clustering, the values in columns are 
between zero and one. Each column sums up to one. There are many implementa-
tions of fuzzy clustering. One of the most popular is the ISODATA method [ 1], where 
ISODATA stands for the Iterative Self-Organizing Data Analysis Technique. Other 
popular fuzzy clustering solutions are Gustafson-Kessel or Fuzzy Maximum Likeli-
hood Estimates method [ 2]. In this section, we implement the ISODATA method as 
an example of fuzzy clustering. 

The fuzzy clustering method process looks the same as in hard clustering. The 
differences are in the way the centroids and the membership matrix are calculated. 
The elements of the membership matrix can be calculated with Eq. 3.4. 

.μik =
⎛
⎝ c∑

j=1

(
d(xk, vi )

d(xk, v j )

) 2
m−1

⎞
⎠

−1

. (3.4) 

In Eq. 3.4, .d(xk, vi ) is the distance between an object and the centroid. We calculate 
the if for each centroid. For two and more centroids, one value of the equation. 

d(xk ,vi )
d(k ,v j )

is always 1.0, because we divide the same distance values. In Python, it can be 
implemented as shown in the Listing 3.5. For a given object . x and centroid number 
. i . We use the same method for calculating the distance as in HCM. It is again the 
Euclidean distance of two objects in a feature space. The variable .m is called a 
fuzzifier and allows us to flatten the plot of the fuzzy membership function. It is 
usually set at 2. 

1 d e f c  a  l  c  u  l  a  t  e  _  u  _  f  c  m  (  x  , c e n t e r s  , g  r  o  u  p  _  i  d  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s m e m b e r s h i p o  f t  h  e o b j e c t x  .  
4 

5 :  p  a  r  a  m x  : o b j e c t t h a t w  e w a n t t  o s  e  t t  h  e c  l  u s t e r  
m e m b e r s h i p i  d  

6 :  p  a  r  a  m c e n t e  r s  : c  e n t r o i d s  
7 :  p  a  r  a  m g r  o u p  _ i  d  : c l u s t e r i  d  
8 :  r  e t u r n  : M  e m b e r s h i p m a t r i x  
9 " " "  

10 d i s t a n c e _ c e n t e r s = 0  
11 f o r g r o u p i  n r a n g e  (  g r o u p s  )  :  
12 i f g r o u p !  = g  r  o  u  p  _  i  d  :  
13 d i s t a n c e _ c e n t e r s +  = c  a l c u l a t e _ d i s t a n c e
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14 (  x  , c e n t e r s  [  g  r  o  u  p  ]  )  
15 d i s t a n c e _ s u m = 1  .  0 + (  c  a l c u l a t e _ d i s t a n c e  (  x  , c  e  n t e r s  
16 [  g  r  o  u  p  _  i  d  ]  ) / d i s t a n c e _ c e n t e r s  )  ∗ ∗ m 
17 r e t u r n d i s t a n c e _ s u m ∗ ∗  −1 

Listing 3.5 FCM centers calculation method 

The centroids are calculated a bit differently compared to HCM. We add the fuzzifier 
variable here and this is actually the only difference between both equations (see 
Eq. 3.5). 

.vi =
∑M

k=1(μ
(t)
ik )mxk∑M

k=1(μ
(t)
ik )m

. (3.5) 

The difference in Python implementation is none if we assign the value of 2 to the 
variable . m. In the Example 3 for simplification, we set .m = 2. 

Example 2 (Aircraft fuzzy clustered) Having the same random centroids as in the 
previous example, we use Eq. 3.4 to calculate the membership values: 

. μ01 =
(
12 + 0.20678

0.6196

2)−1

= (1 + 0.11135)−1 = 0.8998,

. μ11 =
(
12 + 0.6196

0.20678

2)−1

= 0.1002.

The values sum to 1 and are not binary compared to k-means. It is more precise and 
can give us more information. Take a look at the values of the last four objects in the 
membership matrix after the first iteration. 

. U1 =
[
0.899 0.908 0.866 0.956 0.977 0.952 0.257 0.276 0.247 0.186
0.100 0.091 0.133 0.043 0.022 0.047 0.742 0.723 0.752 0.813

]
.

The values of the last four objects are not polarized as the values of the other objects. 
We see that some objects are assigned to the cluster with confidence between 72 
and 81%. What if the membership value is a two-cluster case and is close to 50%? 
This might mean that we should increase the number of clusters, especially when we 
have more such objects. We can also assume that such an object is just noise. The 
centroids are calculated similarly, and for the fuzzy clustering example, the values 
can be calculated as 

. v1 =
[
0.61948325 1.11511858

]
5.4026

= [
0.11466 0.2064

]
,

.v2 =
[
1.63266 1.8573

]
2.343648

= [
0.6966 0.79248

]
.
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The final centroids are a bit different from the k-means. Both centroids look a bit 
more precise because the membership values are not binary: 

. v1 = [
0.11240531 0.19895848

]
,

. v2 = [
0.83355666 0.96018678

]
.

The final membership matrix assigns the objects.x7, x8, x9 to the second cluster with 
higher confidence. The last object is the one placed in the center of the feature space 
in Fig. 3.1. 

. Ufinal =
[
0.988 0.992 0.983 0.990 0.992 0.998 0.006 0.019 0.077 0.792
0.011 0.007 0.016 0.009 0.007 0.001 0.993 0.980 0.922 0.207

]
.

3.1.3 Possibilistic C-Means 

The possibilistic distributed clustering was introduced in [ 3] and is a modification 
of the hard version. We used the fuzzy version in the first phase of the PCM to 
avoid total randomness. PCM works better compared to FCM and HCM if the data 
we have consist of noise data, but to be more robust, it should be preceded by a 
few iterations of the FCM method. The first difference that is visible is the way 
the distances are measured. In PCM we use the Mahalonobis distance instead of 
the Euclidean measure. It is known that the Mahalanobis measure often gives better 
results. In this case, a better means that we do not care about the standardization 
of the data if we have more than two features. The general difference can also be 
plotted as shown in Fig. 3.2. The covariance matrix standardizes the data set taking 
into account the correlation. This means that the redundant information is not taken 
into consideration, as it is in Euclidean distance. The membership function is defined 
as 

Fig. 3.2 Distance measures 
difference comparison
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.μik =
(
1 +

(
DikA

ηi

) 2
m−1

)−1

, (3.6) 

where .DikA is the Mahalonobis distance and . η is a value that is the membership 
possibility for each cluster. The membership function can be implemented in Python 
as in the Listing 3.6. 

1 d e f c  a  l  c  u  l  a  t  e  _  u  _  p  c  m  (  m  e  m  b  e  r  s  h  i  p  , c e n t e r s  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s m e m b e r s h i p o  f t  h  e o b j e c t x  .  
4 

5 :  p  a  r  a  m x  : o b j e c t t h a t w  e w a n t t  o s  e  t t  h  e c  l  u s t e r  
m e m b e r s h i p i  d  

6 :  p  a  r  a  m c e n t e  r s  : c  e n t r o i d s  
7 :  r  e t u r n  : M  e m b e r s h i p m a t r i x  
8 " " "  
9 n e w _ m e m b e r s h i p = n  p  .  z  e  r  o  s  (  (  l e n  (  d  a  t  a  _  s  e  t  )  , g r o u p s  )  )  

10 f o r g r o u p i  n r a n g e  (  g r o u p s  )  :  
11 m  a  h  _  d  i  s  t  a  n  c  e  s = c a l c u l a t e _ m a h _ d i s t a n c e  (  g  r  o  u  p  ,  

c e n t e r s  )  
12 g r o u p _ e t a = c  a  l  c  u  l  a  t  e  _  e  t  a  (  m  e  m  b  e  r  s  h  i  p  , g  r  o  u  p  ,  

m a h _ d i s t a n c e s  )  
13 n e w _ m e m b e r s h i p  [  :  , g  r  o  u  p  ] = (  1  .  0 + (  m a h _ d i s t a n c e s  

/ g r o u p _ e t a  )  ) ∗ ∗  −1 
14 r e t u r n n e w _ m e m b e r s h i p  

Listing 3.6 Membership function Python implementation 

The Mahalanobis distance is calculated as 

.D2
ik A = ||xk − vi ||2A = (xk − vi )

T A(xk − vi ). (3.7) 

The matrix . A is the covariance matrix that flattens the distance between the objects 
as shown in Fig. 3.2. It can be calculated in Python as in the Listing 3.7. The matrix 
is used between two distance measures of two objects. 

1 d e f c a l c u l a t e _ A  (  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e c o v a r i a n c e M a t r i x  
4 

5 :  r  e t u r n  : C  o v a r i a n c e m a t r i x A  
6 " " "  
7 v  a  r  i  a  n  c  e = n  p  .  v  a  r  (  d  a t a _ s e t  , a x i s  =  0  )  
8 A  B  c  o  v = n p  .  c  o  v  (  d  a  t  a  _  s  e  t  [  :  , 0 ]  ∗ d a t a _ s e t  [  :  , 1  ]  )  
9 R = n  p  .  a  r  r  a  y  (  [  [  v  a r i a n c e  [  0  ]  , A  B  c  o  v  ]  , [  A  B  c  o  v  , v  a r i a n c e  

[ 1 ] ] ] )  
10 r e t u r n R ∗ ∗  −1 

Listing 3.7 Covariance matrix calculation for PCM method 

Finally, the Mahalanobis implementation can be done in Python as in Listing 3.8. 

1 d e f c a l c u l a t e _ m a h _ d i s t a n c e  (  g r o u p  , c  e  n  t e r s  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e M  a h a l a n o b i s d  i  s  t  a  n  c  e  
4 

5 :  p  a r a m g r o u p  : g r o u p i  d  
6 :  p  a  r  a  m c e n t e  r s  : c  e n t r o i d s
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7 :  r  e t u r n  : M a h a l a n o b i s d  i  s  t  a  n  c  e  
8 " " "  
9 d  m  c = d  a t a _ s e t − c e n t e r s  [  g  r  o  u  p  ]  

10 d m c a = n  p  .  d  o  t  (  d  a  t  a  _  s  e  t − c e n t e r s  [  g  r  o  u  p  ]  , A  )  
11 

12 d i s t a n c e s = l a m b d a d  m  c  , d  m  c  a  : [  n  p  .  d  o  t  (  d  m  c  a  [ i ] , d  m  c  
13 [ i  ]  ) f o r i i  n r a n g e  (  d  m  c  .  s  h a p e  [  0  ]  )  ]  
14 r e t u r n d i s t a n c e s  (  d  m  c  , d  m  c  a  )  

Listing 3.8 Mahalanobis distance implementation 

The . η parameter can be set the same for every cluster or calculated separately for 
each cluster. If we want to calculate it separately, we should use the equation: 

.ηi =
∑M

k=1(μik)
mD2

ik A∑M
k=1(μik)m

. (3.8) 

The . η also uses the Mahalanobis distance. We can think of this parameter as the 
importance factor of a cluster. The parameter . η can be fixed for each object or 
calculated for each case separately, as shown in Eq. 3.8. The simple implementation 
of . η is given in the Listing 3.9. 

1 d e f c  a  l  c  u  l  a  t  e  _  e  t  a  (  m  e  m  b  e  r  s  h  i  p  , g r o u p  , m  a  h  _  d  i  s  t  a  n  c  e  s  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e e  t  a p a r a m e t e r  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
6 :  p  a r a m g r o u p  : g r o u p i  d  
7 :  p  a  r  a  m m a h _ d i s t a n c e s  : M a h a l a n o b i s d  i  s  t  a  n  c  e  
8 :  r  e t u r n  : e  t  a p a r a m e t e r  
9 " " "  

10 r e t u r n n p  .  s u m  (  (  m e m b e r s h i p  [  :  , g  r  o  u  p  ] ∗ ∗  m ) ∗ 
m a h _ d i s t a n c e s  , a x i s  =  0  ) / n  p  .  s u m  (  m e m b e r s h i p  [  :  , g  r  o  u  p  ]  
∗ ∗  m  , a x i s  =  0  )  

Listing 3.9 PCM eta parameter calculation 

The algorithm is divided into two sections. The variable. F is the number of iterations 
that are executed before we go into the possibilistic method. The first part is a copy-
pasting of the FCM method from the previous section. The second part looks a bit 
different. 

1 d e f c l u s t e r _ p c m  (  m  e  m  b  e  r  s  h  i  p  , c  e  n  t e r s  )  :  
2 " " "  
3 T h i s i  s t  h  e m a i n P  C  M c l u s t e r i n g m e t h o d  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : g l o b a l m e m b e r s h i p m a t r i x  
6 :  p  a  r  a  m c e n t e r s  : g l o b a l c e n t r o i d s  
7 :  r  e t u r n  : m  e m b e r s h i p m  a  t  r  i  x  , c e n t r o i d s  
8 " " "  
9 n e w _ c e n t e r s = c e n t e r s  

10 n  e  w  _  m  e  m  b  e  r  s  h  i  p = m e m b e r s h i p  
11 f o r f i  n r a n g e  ( F ) :  
12 m e m b e r s h i p = [  ]  
13 f o r i i  n r a n g e  ( l e n  (  d  a t a _ s e t  )  )  :  
14 m e m b e r s h i p _ v e c t o r = [  ]  
15 f o r k i  n r a n g e  (  g r o u p s  )  :  
16 m e m b e r s h i p _ v e c t o r  .  a p p e n d  (  c  a  l  c  u  l  a  t  e  _  u  _  f  c  m  
17 (  d  a  t  a  _  s  e  t  [ i ] , n  e  w  _  c  e  n  t  e  r  s  , k ) )  
18 m e m b e r s h i p  .  a p p e n d  (  m  e  m  b e r s h i p _ v e c t o r  )  
19 n e w _ c e n t e r s = c  a  l  c  u  l  a  t  e  _  n  e  w  _  c  e  n  t  e  r  s  (  m e m b e r s h i p  )
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20 n  e  w  _  m  e  m  b  e  r  s  h  i  p = n  p  .  a  r  r  a  y  (  m e m b e r s h i p  )  
21 

22 d i f f e r e n c e _ l i m i t _ n o t _ a c h i e v e d = T  r  u  e  
23 w h i l e d i f f e r e n c e _ l i m i t _ n o t _ a c h i e v e d  :  
24 n  e  w  _  m  e  m  b  e  r  s  h  i  p = c  a  l  c  u  l  a  t  e  _  u  _  p  c  m  (  n  e w _ m e m b e r s h i p  ,  

n e w _ c e n t e r s  )  
25 o l d _ c e n t e r s = n e w _ c e n t e r s  
26 n e w _ c e n t e r s = c  a  l  c  u  l  a  t  e  _  n  e  w  _  c  e  n  t  e  r  s  (  

n e w _ m e m b e r s h i p  )  
27 

28 i f g e t _ c e n t e r s _ d i f f e r e n c e  (  o  l  d  _  c  e  n  t  e  r  s  ,  
n e w _ c e n t e r s  ) < e r r o r _ m a r g i n  :  

29 d i f f e r e n c e _ l i m i t _ n o t _ a c h i e v e d = F  a  l  s  e  
30 r e t u r n n e w _ m e m b e r s h i p  , n e w _ c e n t e r s  

Listing 3.10 Main PCM method implementation 

The error rate is a stop criterion that depends here on the changes of the centroids. 
Depending on the size of the data set, the differences in membership values are very 
often made on each iteration, and if we sum up all the changes, it might be that 
we never reach the stop criterion. The differences are calculated on the basis of the 
centroids’ changes rather than the membership matrix changes. 

Example 3 (Aircraft possibilistic clustering) In this example, we use the same data 
set as in the previous two sections. The fuzzy part of the method returns after two 
iterations of the membership matrix as follows. 

. Ufcm =
[
0.980 0.988 0.976 0.983 0.986 0.998 0.056 0.082 0.066 0.655
0.019 0.011 0.023 0.016 0.013 0.001 0.943 0.917 0.934 0.344

]
.

The centroids are already set in a good position after just two iterations: 

. v1 = [
0.1042 0.1944

]
,

. v2 = [
0.8096 0.9445

]
.

Both are adjusted with the PCM part of the algorithm. In the first step of the PCM 
part, we should calculate the .A matrix that uses the entire data set, because we 
need to calculate the correlation between each object. The matrix for our data is the 
following: 

. A =
[
7.89464944 6.69665317
6.69665317 7.75894855

]
.

The second step is to calculate the Mahalonobis distances. For the first object, it is 

.

D00 =
([

0.007859
0.123567

]
−

[
0.1042
0.1944

] [
0.007859 0.123567

]) ∗

∗
[
7.89464944 6.69665317
6.69665317 7.75894855

] [
0.007859
0.123567

]
−

[
0.1042
0.1944

]
= 0.20355.
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For the second cluster, the distance equals.D10 = 19.11895 and is much greater than 
the distance for the first group. It is easy to assume that the closer distance also means 
a greater membership value. All distances are given in the following matrix: 

. DikA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2035 19.1189
0.0661 17.4034
0.0210 15.1151
0.0283 16.4173
0.0112 15.213
0.0102 14.6471
17.7387 0.0906
20.2641 0.3508
11.77 0.2998
1.8938 6.5137

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The last step before we get the membership value is the cluster probability. η param-
eters that need to be calculated. We have two . η values, one for each cluster. The 
equation consists of two sums [see (3.8)]. For .η0 we take the Mahalnobis distance 
and multiply it by the square of the membership values of the first cluster. The sum 
is divided next just by the sum of the squares of the membership values of the first 
cluster. Respectively for . η1. 

. η0 = 0.980567352 ∗ 0.2035 + 0.98832 ∗ 0.0661 + · · · + 0.65582 ∗ 1.8938

0.980567352 + · · · + 0.65582
= 0.2216,

. η1 = 0.01942 ∗ 19.1189 + · · · + 0.34422 ∗ 6.5137

0.01942 + · · · + 0.34422
= 0.5268.

The probability parameter is greater for the second cluster than for the first. It might 
be like that because the objects in the second cluster are not so close to the centroid 
compared to the first cluster. The fourth step is to calculate the membership matrix. 
Having the. η and Mahalanobis distance values, it is easy to calculate. The calculation 
is as follows: 

. μ00 =
(
1 + 0.2035

0.2216

)−1

= 0.304852.

The final membership matrix is shown below. 

. Up =
[
0.5425 0.9183 0.9911 0.9839 0.9975 0.9979 0.0002 0.0001 0.0004 0.0135
0.0008 0.0009 0.0012 0.001 0.0012 0.0013 0.9713 0.6927 0.7554 0.0065

]
.

The centroids.v1 and.v2 are calculated in the same way as in the previous two methods, 
and for PCM we get 

. v1 = [
0.0899 0.1857

]
,

.v2 = [
0.8378 0.9656

]
.
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Table 3.3 Membership matrix for three distributed clustering methods 

.x0 .x1 .x2 .x3 .x4 .x5 .x6 .x7 .x8 . x9

.Uh0 1 1 1 1 1 1 0 0 0 1 

.Uh1 0 0 0 0 0 0 1 1 1 0 

.U f 0 0.9881 0.9928 0.9839 0.9902 0.9921 0.9985 0.0061 0.0198 0.0771 0.7926 

.U f 1 0.0119 0.0072 0.0161 0.0098 0.0079 0.0015 0.9939 0.9802 0.9229 0.2074 

.Up0 0.5425 0.9183 0.9911 0.9839 0.9975 0.9979 0.0002 0.0001 0.0004 0.0135 

.Up1 0.0008 0.0009 0.0012 0.001 0.0012 0.0013 0.9713 0.6927 0.7554 0.0065 

Both are not as different compared to previous methods, but the membership matrix 
is the totally different. 

3.1.3.1 Comparison 

Comparison of the results of distributed methods can be major if we compare HCM 
to FCM, or minor if we compare FCM to PCM. It is true that the more fuzzy or 
possibilistic the method is, the more precise results we get. An overview of the 
membership matrix is given in Table 3.3. What is important, based on the membership 
values, is that all results assign each object to the same cluster in each of the three 
methods. It means that it does not differ so much for such a small data set, but can 
give us more information, especially to the number of clusters. More values closer 
to 0.5 in the fuzzy set or closer to 0 in the case of the possibilistic method, then the 
probability of increasing the number of clusters is higher. 

3.2 Hierarchical Clustering 

Hierarchical clustering methods are based on partitioning. A partition is just another 
name for a cluster used in hierarchical methods. We can imagine a nested data set as 
shown in Fig.  3.3. The main data set includes a few smaller sets that include a few 
smaller sets and so on. On the other hand, we can define it as a merge or fusion of the 
smallest data sets into bigger ones until we reach the main data set. Let us imagine 
that we have a list of some life forms as shown in Table 3.4. We can distinguish each 
animal on the basis of a few criteria. It is easy to see that animals can be presented 
as a tree of types, subtypes, and so on. We can also present such life forms based on 
some other features, such as the nested set in Fig. 3.3. Each of the life forms listed 
in Table 3.4 can be assigned to the group Animals. We have four mammals, four 
reptiles, and more on the list. Each group, as Mammals, has two different types like 
Marine and Land mammals. In other words, starting from the main cluster Animals
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Fig. 3.3 Example shown in Table 3.4 as nested sets (a) and dendrogram (b) 

we can divide it into smaller groups at each stage until we divide it into clusters with 
one animal each. 

Hierarchical methods can do it both ways. This means that we can also merge 
small partitions into a larger cluster [ 4]. Hierarchical methods can be divided into
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Table 3.4 A few life forms that can be grouped by the criteria 

Id Group Subgroup Animal 
name 

Id Group Subgroup Animal 
name 

1 Mammals Marine Dolphin 9 Fishes Sea Shark 

2 Mammals Marine Whale 10 Fishes Sea Tune 

3 Mammals Land German 
Sheppard 

11 Fishes River Pike 

4 Mammals Land Persian 
cat 

12 Fishes River Eel 

5 Reptiles Vegetarian Iguana 13 Insects Crawling Ladybug 

6 Reptiles Vegetarian Tortoise 14 Insects Crawling Earthworm 

7 Reptiles Meat 
eaters 

Anaconda 15 Insects Flying Bee 

8 Reptiles Meat 
eaters 

Gecko 16 Insects Flying Housefly 

two subtypes: agglomerative and divisive. The first one is about merging/aggregating 
partitions and the second is about dividing/splitting sets into smaller ones. 

3.2.1 Agglomerative Clustering 

Agglomerative clustering [ 5, 6] is also known as the “bottom-up” clustering method, 
because it merges smaller clusters into larger ones. The method is easy to implement 
and even easier to understand. Here, we use the Euclidean distance measure to create 
the distance matrix. The agglomerative clustering method is divided into three steps: 

1. calculate current dendrogram distance matrix, 
2. get lowest distance from matrix, 
3. merge clusters/elements into clusters. 

It is repeated until we have one cluster or reach the expected cluster count. 

Distance matrix 

In the agglomerative matrix, we calculate the distances between each object in the 
first step. The distance matrix is the size of.N × N , where.N is the number of objects 
in the data set. Obviously, the diagonal values are equal to zero. The Listing 3.11 is 
one of the possible implementations of how to obtain the distance matrix.
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1 d e f c a l c u l a t e _ d e n d o g r a m _ d i s t a n c e _ m a t r i x _ d i a n a  (  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e t  h  e d  i s t a n c e m a t r i x f  o  r d  i  a  n  a  

m e t h o d s  
4 

5 :  r  e t u r n  : d  i  s  t  a  n  c  e m a t r i x  
6 " " "  
7 d i s t a n c e _ m a t r i x  =  n  p  .  z  e  r  o  s  (  (  l e n  (  d  a t a _ s e t  )  , l e n  (  d  a t a _ s e t  

) ) )  
8 f o r i i  n r a n g e  ( l e n  (  d  a t a _ s e t  )  )  :  
9 f o r j i  n r a n g e  ( l e n  (  d  a t a _ s e t  )  )  :  

10 d i s t a n c e _ m a t r i x  [  i  , j  ] = c a l c u l a t e _ d i s t a n c e  
11 (  c a l c u l a t e _ c e n t r o i d  (  d  a  t  a  _  s  e  t  [  i  ]  )  ,  

c a l c u l a t e _ c e n t r o i d  (  d  a  t  a  _  s  e  t  [  j  ]  )  )  
12 r e t u r n d i s t a n c e _ m a t r i x  

Listing 3.11 Distance matrix calculation for agglomerative clustering 

The goal is to find the lowest distance between two objects. These two are the most 
similar to each other and should be merged into one cluster. 

1 d e f g e t _ l o w e s t _ f r o m _ d i s t a n c e _ m a t r i x  (  d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  )  :  
2 " " "  
3 T h i s m  e t h o d g e t s t  h  e l o w e s t v  a  l  u  e f r o m t  h  e d  i  s  t  a  n  c  e  

m a t r i x  
4 

5 :  p  a  r  a  m d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  : c u r r e n t d e n d r o g r a m  
6 :  r  e t u r n  : l o w e s t v  a  l  u  e i  n  d  e  x  
7 " " "  
8 n  p  .  f  i  l  l  _  d  i  a  g  o  n  a  l  (  d i s t a n c e _ m a t r i x  , n  p  .  i  n  f  )  
9 l  o  w  e  s  t  _  i  n  d  e  x  e  s = n  p  .  u  n  r  a  v  e  l  _  i  n  d  e  x  (  n  p  .  a r g m i n  (  

d i s t a n c e _ m a t r i x  , a x i s  =  N o n e  )  , d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  .  s  h  a  p  e  )  
10 n  p  .  f  i  l  l  _  d  i  a  g  o  n  a  l  (  d i s t a n c e _ m a t r i x  , 0  )  
11 r e t u r n l o w e s t _ i n d e x e s  

Listing 3.12 Lowest distance in distance matrix implementation 

The Listing 3.12 shows how to use NumPy to find the lowest value in a matrix and 
get the indices. 

Merging two clusters 

The merging part adds a new level to the dendrogram and sets the new clusters list 
on it as in the Listing 3.13. We can also implement it in a different way and avoid 
the part of level creation. 

1 d e f m  e  r  g  e  _  e  l  e  m  e  n  t  s  (  c u r r e n t _ d e n d r o g r a m s  , m  e  r  g  e  d  _  l  i  s  t  , i  )  :  
2 " " "  
3 T h i s m  e t h o d a d d s t  o t  h  e c  u  r  r e n t d e n d r o g r a m n  e  w o b j e c t  

(  e l e m e n t s  )  
4 

5 :  p  a  r  a  m c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  : c u r r e n t d e n d r o g r a m  
6 :  p  a  r  a  m m e r g e d _ l i s t  : m e r g e d c  h  i  l  d n  o  d  e  s l  i  s  t  
7 :  p  a  r  a  m i  : t  h  e d e n c d r o g r a m l  e  v  e  l  
8 :  r  e t u r n  : m e r g e d c  h  i  l  d n  o  d  e  s l  i  s  t  
9 " " "  

10 i  f i s i n s t a n c e  (  c  u r r e n t _ d e n d r o g r a m s  [  i  ]  [  0  ]  , t y p e  ( n  p .  
a  r  r  a  y  ( [ ] )  )  )  :  

11 f  o  r i t e r i  n r  a  n  g  e  ( l e n  (  c  u r r e n t _ d e n d r o g r a m s  [  i  ]  )  )  :  
12 m e r g e d _ l i s t  .  a p p e n d  (  c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  [  i  ]  [  

i t e r  ] )  
13 e l s e  :
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Table 3.5 Clusters distance measure methods 

Method name Equation 

Single linkage .d12 = mini, j d(Xi , Y j ) (3.9) 

Complete linkage .d12 = maxi, j d(Xi , Y j ) (3.10) 

Average linkage .d12 = 1
kl

∑k
i=1

∑ j
j=1 d(Xi , Y j ) (3.11) 

Centroid method .d12 = d(x̄, ȳ) (3.12) 

14 m e r g e d _ l i s t  .  a p p e n d  (  c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  [  i  ]  )  
15 r e t u r n m e r g e d _ l i s t  

Listing 3.13 Merging two clusters in agglomerative clustering 

We can stick to the current dendrogram level and merge based on it until we reach the 
stop criterion, but saving each merge in the dendrogram allows us to make decisions 
based on the history of the merges and gives a better overview of the method after it 
is finished. 

Distance matrix between clusters 

We could stop here if we are fine with the number of clusters, but in most cases, we 
would like to proceed. Going back to step one of the method, we need to calculate 
the distance matrix again. The only question here is how to calculate the distance 
between a cluster that consists of one object and a cluster with more objects. There 
are methods to calculate the distances between clusters with any number of objects. 
Some of such methods are given in Table 3.5. The distances can be calculated as 
the minimum distance between two objects from each cluster. This method is called 
the single linkage method. The opposite is the maximum distance that is used in 
the complete linkage method. We also have an average distance measure, where 
we take the average distance between all objects. A similar one is based on the 
centroids, where the centroids are calculated as the average positions of all objects in 
a given cluster. Next, we calculate the distance between the centroids of both clusters. 
This method is implemented in Listing 3.14 as the simple one and is based on the 
knowledge from the previous chapter where centroids were used for the calculation 
of the membership matrix. 

1 d e f c a l c u l a t e _ c e n t r o i d  (  d  e n d r o g r a m _ e l e m e n t s  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e c e n t r o i d s f  o  r t  h  e c  u  r r e n t  

d e n d r o g r a m p a r t b  y m e r g i n g t  h  e e  l  e  m  e  n  t  s w i t h i n t h i s  
s u b s e t  

4 

5 :  p  a  r  a  m d  e  n  d  r  o  g  r  a  m  _  e  l  e  m  e  n  t  s  : s u b s e t o  f t  h  e d e n d r o g r a m  
6 :  r  e t u r n  : c e n t r o i d s  
7 " " "  
8 i  f t y p e  (  d  e n d r o g r a m _ e l e m e n t s  ) i  s l i s t  : 
9 s u m o f  =  n  p  .  z  e r o s  (  l e n  (  d  e  n  d  r  o  g  r  a  m  _  e  l  e  m  e  n  t  s  [ 0 ] )  )  

10 f  o  r i t e r i  n r  a  n  g  e  ( l e n  (  d  e n d r o g r a m _ e l e m e n t s  )  )  :  
11 s  u  m  o  f  =  n  p  .  a  d  d  (  s u m o f  ,  n  p  .  a  r  r  a  y  (  

d e n d r o g r a m _ e l e m e n t s  [  i t e r  ] )  )
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12 i f s u m o f  .  s  h a p e =  = (  l e n  (  d  a t a _ s e t  [  0  ]  )  ,  l e n  (  d  a t a _ s e t  
[ 0 ] )  )  :  

13 p a s s  
14 r e t u r n n  p  .  d i v i d e  (  s  u  m  o  f  ∗ 1 . 0  , l e n  ( 

d e n d r o g r a m _ e l e m e n t s  )  ∗ 1 . 0 )  
15 e l s e  : 
16 r e t u r n d e n d r o g r a m _ e l e m e n t s  

Listing 3.14 Centroid calculation for the agglomerative clustering method 

Building the dendrogram 

The dendrogram consists of levels consisting of nodes. We create a new node for 
each iteration. To create a new node, we just merge two clusters into one cluster, as 
shown in the Listing 3.15. This part works together with the main function of the 
agglomerative method in Listing 3.16. 

1 d e f s e t _ c u r r e n t _ d e n d r o g r a m  (  c u r r e n t _ d e n d r o g r a m s  ,  
d e n d r o g r a m s _ h i s t  ,  i  , j  )  :  

2 " " "  
3 T h i s m  e t h o d s  e  t t  h  e c u r r e n t d e n d r o g r a m a  n  d c h a n g e t  h  e  

d e n d r o g r a m h i s t o r y  
4 

5 :  p  a  r  a  m c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  : c u r r e n t d e n d r o g r a m  
6 :  p  a  r  a  m d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t  : d e n d r o g r a m c  h  a n g e s r e c o r d  
7 :  p  a  r  a  m i  : i  d o  f o  n  e o  f t  h  e c h o s e n c l u s t e r  
8 :  p  a  r  a  m j  : i  d o  f o  n  e o  f t  h  e c h o s e n c l u s t e r  
9 :  r  e t u r n  : c u r r e n t d e n d r o g r a m a  n  d h  i  s  t o r y  

10 " " "  
11 e l e m e n t s = [  ]  
12 h i s t = [  ]  
13 c u r r e n t _ h i s t = d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t  [  − 1 ]  
14 f  o  r i t e r i  n r  a  n  g  e  ( l e n  (  c  u r r e n t _ d e n d r o g r a m s  )  )  :  
15 i  f i t e r ! = i a  n  d i  t e r ! =  j  :  
16 e  l  e  m  e  n  t  s  .  a p p e n d  (  c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  [  i t e r  ] )  
17 h i s t  .  a p p e n d  (  c  u  r  r  e  n  t _ h i s t  [  i t e r  ] )  
18 m e r g e d _ e l e m e n t s = [  ]  
19 m  e  r  g  e  d  _  e  l  e  m  e  n  t  s = m  e  r  g  e  _  e  l  e  m  e  n  t  s  (  c u r r e n t _ d e n d r o g r a m s  ,  

m e r g e d _ e l e m e n t s  , i  )  
20 m  e  r  g  e  d  _  e  l  e  m  e  n  t  s = m  e  r  g  e  _  e  l  e  m  e  n  t  s  (  c u r r e n t _ d e n d r o g r a m s  ,  

m e r g e d _ e l e m e n t s  , j  )  
21 e  l  e  m  e  n  t  s  .  a p p e n d  (  m  e  r  g  e  d  _  e  l  e  m  e  n  t  s  )  
22 h i s t  .  a  p p e n d  (  [  c  u  r  r  e  n  t _ h i s t  [  i  ]  ,  c u r r e n t _ h i s t  [  j  ]  ]  )  
23 d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t  .  a p p e n d  (  h  i  s  t  )  
24 c u r r e n t _ d e n d r o g r a m s = e  l  e  m  e  n  t  s  
25 r e t u r n c u r r e n t _ d e n d r o g r a m s  , d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t  

Listing 3.15 New dendrogram implementation 

We loop over the number of elements in the current dendrogram that includes at the 
beginning just all objects. We subtract the count of the objects by 2 because we need 
only this number of iterations to create the top cluster with all objects in it. 

1 d e f c l u s t e r _ a g g  (  c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  )  :  
2 " " "  
3 T h i s m a i n a  g  g  l  o  m  e  r  a  t  i  v  e c l u s t e r i n g m e t h o d  
4 

5 :  p  a  r  a  m c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  : g l o b a l c u r r e n t d e n d r o g r a m  
v a r i a b l e  

6 :  r  e t u r n  : c  l u s t e r i n g h i s t o r y  
7 " " "
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8 d e n d r o g r a m s _ h i s t = [  l i s t  ( r a n g e  ( l e n  (  d  a  t  a  _  s  e  t  ) ) ) ]  
9 f  o  r i t e r i  n r  a  n  g  e  ( l e n  (  c  u r r e n t _ d e n d r o g r a m s  )  − 1)  :  

10 d i s t a n c e _ m a t r i x =  
c a l c u l a t e _ d e n d o g r a m _ d i s t a n c e _ m a t r i x  

11 (  c  u r r e n t _ d e n d r o g r a m s  )  
12 [  i  , j  ] = g e t _ l o w e s t _ f r o m _ d i s t a n c e _ m a t r i x  
13 (  d  i s t a n c e _ m a t r i x  )  
14 c u r r e n t _ d e n d r o g r a m s  , d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t =  

s e t _ c u r r e n t _ d e n d r o g r a m  (  c u r r e n t _ d e n d r o g r a m s  ,  
d e n d r o g r a m s _ h i s t  ,  i  , j  )  

15 r e t u r n d e n d r o g r a m s _ h i s t  

Listing 3.16 Agglomerative clustering main method 

We use the get_lowest_from_distance_matrix() function to obtain the 
lowest distance and add the new node to the dendrogram. Finally, the current level 
is set as the one that needs to be merged. 

Example 4 (Aircraft agglomerative clustered) In this example, we use the same 
data set as in the previous clustering examples. In agglomerative clustering, we start 
with many clusters that consist of one object. The first step is to calculate the distance 
matrix. The distance between .x0 and .x1 is 

. d(x0, x1) =
√

(0.007859 − 0.017682)2 + (0.123567 − 0.188535)2 = 0.066.

The distance matrix in the first iteration is as follows: 

. D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.066 0.171 0.148 0.169 0.144 1.225 1.303 1.041 0.490
0.066 0 0.106 0.163 0.169 0.093 1.175 1.254 0.981 0.450
0.172 0.106 0 0.240 0.229 0.1 1.109 1.191 0.895 0.415
0.148 0.163 0.24 0 0.0402 0.149 1.140 1.215 0.994 0.394
0.169 0.169 0.229 0.0402 0 0.132 1.1 1.175 0.955 0.354
0.144 0.093 0.1 0.149 0.131 0 1.083 1.162 0.898 0.357
1.225 1.175 1.109 1.14 1.1 1.083 0 0.086 0.352 0.746
1.303 1.254 1.191 1.215 1.175 1.162 0.086 0 0.431 0.821
1.041 0.981 0.895 0.994 0.955 0.898 0.352 0.431 0 0.632
0.49 0.45 0.415 0.394 0.354 0.357 0.746 0.821 0.632 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The smallest distance value is .0.0402 and this is the distance between the object 
.x3 and . x4. We take these two and merge them into one cluster. The next step is to 
calculate the distance matrix again, but this time for the merged objects we use the 
centroid to measure the distance. Finally, we get the dendrogram as given in Fig. 3.4. 
We see that the levels are not exactly drawn from the bottom in the exact time order 
when these clusters were created. We merged the third and fourth objects that are 
shown in the bottom right of the figure as the first one, but because of the complexity 
of other merges, it looks as if we merged the objects .x0, x1, x2 and .x5 as the first 
ones. This is not a mistake or error, because we still have the proper structure of the 
nodes.
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Fig. 3.4 Aircraft example dendrogram created using hierarchical clustering. The numbers are the 
aircraft ids 

3.2.2 Divisive Clustering 

Divisive clustering [ 7– 9] is the opposite way to create clusters compared to agglom-
erative clustering. It is also known as Diana clustering. We divide one cluster into 
smaller ones. The divisive clustering method is divided into three steps: 

1. calculate distance matrix in each cluster, 
2. get highest distance average, 
3. split clusters. 

It is repeated until we have no cluster to be divided or the expected clusters’ number 
is reached. The differences are in the second and third steps. 

Choose cluster to split 

The method of choosing the objects to split is implemented in the Listing 3.17. 
We find the highest differentiation cluster that we have set in the highest_diff 
variable. This is the cluster that will be split in the next step. 

1 d e f c  h  o  o  s  e  _  c  l  u  s  t  e  r  (  c u r r e n t _ l e v e l  , d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  )  :  
2 " " "  
3 T h i s m  e t h o d c h o o s e t  h  e n  e  x  t c l u s t e r t  o b  e d i v i d e d  
4 

5 :  p  a  r  a  m c  u  r  r  e  n  t  _  l  e  v  e  l  : d e n d r o g r a m l  e  v  e  l  
6 :  p  a  r  a  m d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  : d  i  s  t  a  n  c  e m a t r i x  
7 :  r  e t u r n  : c h o s e n c l u s t e r  , d  i  f  f  e  r  e  n  c  e  , c h o s e n c l u s t e r  

i d
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8 " " "  
9 i  f t y p e  (  c  u r r e n t _ l e v e l  [  0  ]  ) !  = l i s t  : 

10 b  o  t  h  _  i  d  x = n  p  .  a  r  r  a  y  (  c  u r r e n t _ l e v e l  )  
11 c u r r e n t = d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  [  b  o t h  _ i  d x  [  :  ,  N o n e  ]  ,  

b o t h _ i d x  ]  
12 d i f f = n  p  .  s u m  (  c u r r e n t  ) / (  c u r r e n t  .  s  h  a  p  e  [  0  ]  ∗ 

c u r r e n t  .  s  h  a  p  e  [  1  ] − l e n  (  c u r r e n t  )  )  
13 r e t u r n c u r r e n t _ l e v e l  , d i f f  , 0  
14 h i g h e s t _ d i f f = 0  
15 c l u s t e r _ i d = 0  
16 f o r i i  n r a n g e  ( l e n  (  c  u r r e n t _ l e v e l  )  )  :  
17 b  o  t  h  _  i  d  x = n  p  .  a  r  r  a  y  (  c  u r r e n t _ l e v e l  [  i  ]  )  
18 c u r r e n t = d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  [  b  o t h  _ i  d x  [  :  , N o n e  ]  ,  

b o t h _ i d x  ]  
19 d i f f = n  p  .  s u m  (  c u r r e n t  ) / (  c u r r e n t  .  s  h  a  p  e  [  0  ]  ∗ 

c u r r e n t  .  s  h  a  p  e  [  1  ]  − l e n  (  c u r r e n t  )  )  
20 i f d i f f > h  i  g  h  e  s  t _ d i f f  :  
21 h i g h e s t _ d i f f = d  i  f  f  
22 c l u s t e r _ i d = i  
23 r e t u r n c  u  r  r  e  n  t  _  l  e  v  e  l  [  c l u s t e r _ i d  ]  , h i g h e s t _ d i f f  ,  

c l u s t e r _ i d  

Listing 3.17 Divisive clustering—choosing objects to split 

Based on a threshold diff we divide the objects into cluster1 and cluster2 
sets in Listing 3.18. 

1 d e f s  p  l  i  t  (  s p l i t _ c l u s t e r  , d  i s t a n c e _ m a t r i x  , d  i  f  f  )  :  
2 " " "  
3 T h i s m  e t h o d s  p  l  i  t t  h  e c h o s e n c l u s t e r i  n  t  o t  w  o  

c l u s t e r s  
4 

5 :  p  a  r  a  m s  p  l  i  t  _  c  l  u  s  t  e  r  : c l u s t e r t  h  a  t n  e  e  d  s t  o b  e s  p  l  i  t  
6 :  p  a  r  a  m d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  : d  i  s  t  a  n  c  e m a t r i x  
7 :  p  a  r  a  m d i f f  : d i f f e r e n c e o  f d i s t a n c e s b  e  t w e e n o b j e c t s  

w i t h i n t  h  e c l u s t e r  
8 :  r  e t u r n  : t  w  o c  l  u  s  t  e  r  s  
9 " " "  

10 i f l  e  n  (  s  p l i t _ c l u s t e r  ) =  = 2  :  
11 c l u s t e r 1 = [  s  p  l  i  t  _  c  l  u  s  t  e  r  [  0  ]  ]  
12 c l u s t e r 2 = [  s  p  l  i  t  _  c  l  u  s  t  e  r  [  1  ]  ]  
13 r e t u r n c l u s t e r 1  , c  l  u  s  t  e  r  2  
14 s p l i t _ t h r e s h o l d = d  i  f  f  
15 b o t h _ i d x = n  p  .  a  r  r  a  y  (  s  p  l  i  t  _  c  l  u  s  t  e  r  )  
16 d i s t a n c e s = d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  [  b  o t h _ i d x  [  :  , N  o  n  e  ]  ,  

b o t h _ i d x  ]  
17 c  1  k  e  y  s  , c  1  c  o  u  n  t  s = n  p  .  u n i q u e  (  n  p  .  a  r  g  w  h  e  r  e  (  d i s t a n c e s >  

s p l i t _ t h r e s h o l d  )  , r  e t u r n _ c o u n t s  =  T  r  u  e  )  
18 c  2  k  e  y  s  , c  2  c  o  u  n  t  s = n  p  .  u n i q u e  (  n  p  .  a  r  g  w  h  e  r  e  (  d i s t a n c e s <  =  

s p l i t _ t h r e s h o l d  )  , r  e t u r n _ c o u n t s  =  T  r  u  e  )  
19 c l u s t e r 1 _ c o u n t s = d i c t  ( z i p  (  n  p  .  a  r  r  a  y  (  s p l i t _ c l u s t e r  )  [  

c 1 k e y s  ]  , c  1  c  o  u  n  t  s  )  )  
20 c l u s t e r 2 _ c o u n t s = d i c t  ( z i p  (  n  p  .  a  r  r  a  y  (  s p l i t _ c l u s t e r  )  [  

c 2 k e y s  ]  , c  2  c  o  u  n  t  s  )  )  
21 c l u s t e r 1 = [  ]  
22 c l u s t e r 2 = [  ]  
23 c h o i c e = 0  
24 f o r i t e m i n s p l i t _ c l u s t e r  :  
25 i f i t e m n o t i  n c  l  u  s  t  e  r  1  _  c  o  u  n  t  s  .  k e y s  (  )  :  
26 c  l  u  s  t  e  r  2  .  a p p e n d  (  i  t  e  m  )  
27 c o n t i n u e  
28 i f i t e m n o t i  n c  l  u  s  t  e  r  2  _  c  o  u  n  t  s  .  k e y s  (  )  :  
29 c  l  u  s  t  e  r  1  .  a p p e n d  (  i  t  e  m  )  
30 c o n t i n u e  
31 i f c l u s t e r 1 _ c o u n t s  [  i  t  e  m  ] < c l u s t e r 2 _ c o u n t s  [  i  t  e  m  ]  :  
32 c  l  u  s  t  e  r  2  .  a p p e n d  (  i  t  e  m  )
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33 e l i f c l u s t e r 1 _ c o u n t s  [  i  t  e  m  ] > c l u s t e r 2 _ c o u n t s  [  i  t  e  m  
] :  

34 c  l  u  s  t  e  r  1  .  a p p e n d  (  i  t  e  m  )  
35 e l s e  : 
36 i f c h o i c e =  = 0  :  
37 c  l  u  s  t  e  r  2  .  a p p e n d  (  i  t  e  m  )  
38 c h o i c e = 1  
39 e l s e  : 
40 c  l  u  s  t  e  r  1  .  a p p e n d  (  i  t  e  m  )  
41 c h o i c e = 0  
42 r e t u r n c l u s t e r 1  , c  l  u  s  t  e  r  2  

Listing 3.18 Split method in divisive clustering 

The code is a bit long because we loop over the cluster and keep the history of the 
actions we do. 

Build the dendrogram 

The other methods except for the main are the same as in the agglomerative method. 
The main method of the divisive clustering is given in Listing 3.19. The divisive 
clustering is a bit more complex compared to the agglomerative because of the way 
we choose the cluster to split. 

1 d e f c l u s t e r _ d i a n a  (  )  :  
2 " " "  
3 T h i s i  s t  h  e m a i n m e t h o d o  f d  i  a  n  a c l u s t e r m e t h o d  
4 

5 :  r  e t u r n  : d  e n d r o g r a m h i s t o r y r e c o r d s  
6 " " "  
7 d e n d r o g r a m s _ h i s t o r y  =  [  ]  
8 c u r r e n t _ d e n d r o g r a m s  =  [  l i s t  ( r a n g e  ( l e n  (  d  a  t  a  _  s  e  t  ) ) ) ]  
9 d i s t a n c e _ m a t r i x =  

c a l c u l a t e _ d e n d o g r a m _ d i s t a n c e _ m a t r i x _ d i a n a  (  )  
10 w h i l e l  e  n  (  c  u r r e n t _ d e n d r o g r a m s  ) !  = l e n  (  d  a t a _ s e t  )  :  
11 c  u  r  r  e  n  t  _  l  e  v  e  l = c  u r r e n t _ d e n d r o g r a m s  [  − 1 ]  
12 c u r r e n t _ c l u s t e r  , d i f f  , c l u s t e r _ i d =  

c  h  o  o  s  e  _  c  l  u  s  t  e  r  (  c u r r e n t _ l e v e l  , d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  )  
13 c l u s t e r 1  , c  l  u  s  t  e  r  2 = s  p  l  i  t  (  c  u  r  r e n t _ c l u s t e r  ,  

d i s t a n c e _ m a t r i x  , d i f f  )  
14 i  f t y p e  (  c  u r r e n t _ l e v e l  [  0  ]  ) !  = l i s t  : 
15 c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  .  a p p e n d  (  [  c  l  u  s  t e r 1  ,  

c l u s t e r 2  ]  )  
16 e l s e  : 
17 r e s t = c  u  r  r  e  n  t  _  l  e  v  e  l  .  c o p y  (  )  
18 r e s t  .  p  o  p  (  c l u s t e r _ i d  )  
19 r e s t  .  a p p e n d  (  c  l  u  s  t  e  r  1  )  
20 r e s t  .  a p p e n d  (  c  l  u  s  t  e  r  2  )  
21 c  u  r  r  e  n  t  _  d  e  n  d  r  o  g  r  a  m  s  .  a p p e n d  (  r  e  s  t  )  
22 h i s t = [  {  "  a c e s o r  "  : c  u r r e n t _ c l u s t e r  , "  c h i l d s  "  : 
23 [  c l u s t e r 1  ,  c  l  u  s  t  e  r  2  ]  }  ]  
24 d  e  n  d  r  o  g  r  a  m  s  _  h  i  s  t  o  r  y  .  a p p e n d  (  h  i  s  t  )  
25 r e t u r n d e n d r o g r a m s _ h i s t o r y  

Listing 3.19 Divisive clustering main method 

In the main method code we invoke the distance matrix method once, choose the 
group to split, do the split, and in the last part of the code we save the changes made 
to the current dendrogram level. The changes are saved in the variable hist.
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3.3 Density Based Clustering 

The density-based clustering is based on the neighborhoods. DBScan is one of the 
density-based clustering methods that we cover in this chapter. It is similar to hierar-
chical clustering, since we calculate the distance matrix between each element. One 
of the advantages of the density-based methods is the lack of the parameter . k. The  
number of clusters is one of the returned values of this method. On the other hand, 
the number of clusters depends on a parameter . ε that defines the neighborhood of 
objects. 

3.3.1 DBScan 

In the method, we go through each element and count the number of neighborhood 
elements in a distance area. It is calculated as follows: 

.Nε : xi |d(xi , x j ) ≤ ε, (3.13) 

where .xi and .x j are two elements of the training data set and . ε is the neighborhood 
distance. The distance is used to find the most similar objects in the feature space. 
This is one of the two parameters that we need to set in this method. The second 
parameter is the min_points parameter, which is about the number of neighbors 
that we expect to have at least not to be considered as the border object of the cluster. 
If the object does not have any neighbors, it is considered as noise. The method 
consists of the following steps: 

1. calculate distance matrix, 
2. get the closest element, 
3. merge into a cluster if the distance is small enough. 

It can also be used to find noise in the data set. The calculation of the distance 
matrix can be implemented in the same way as in the hierarchical clustering methods 
explained in the previous chapter. 

Mark functions 

The method goes through each object in the data set and assigns an object to one of 
the clusters or to the noise. We also need to have functions to set if we have checked 
an object or it still needs to be assigned. These types of methods for setting the status 
and checking the status of each object are implemented in the Listing 3.20. 

1 d e f s e t _ a s _ n o i s e  (  m  e  m  b  e  r  s  h  i  p  , e l e m e n t _ i d  )  :  
2 " " "  
3 T h i s m  e t h o d s e t s a  n o b j e c t a  s n  o  i  s  e  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x
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6 :  p  a  r  a  m e l e m e n t _ i d  : m  e  a  s  u  r  e  d o b j e c t i  d  
7 :  r  e t u r n  : m  e m b e r s h i p m a t r i x  
8 " " "  
9 m e m b e r s h i p  [  e l e m e n t _ i d  ] = −1 

10 r e t u r n m e m b e r s h i p  
11 

12 

13 d e f s e t _ v i s i t e d  (  e l e m e n t s  , m  e  m  b  e  r  s  h  i  p  , n  u  m  b e r _ o f _ c l u s t e r s  )  
: 

14 " " "  
15 T h i s m  e t h o d s e t s a  n o b j e c t a  s a l r e a d y c h e c k e d  /  

a s s i g n e d  
16 

17 :  p  a  r  a  m e l  e m e  n t  s  : o b j e c t s t  h  a  t w  e w  a  n  t t  o s  e  t a  s  
a l r e a d y c  h e c k e d  

18 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
19 :  p  a  r  a  m n u m b e r _ o f _ c l u s t e r s  : t  h  e n u m b e r o  f c l u s t e r t  o  

b  e s  e  t a  s c h e c k e d i  n t  h  e m e m b e r s h i p m a t r i x  
20 :  r  e t u r n  : m  e m b e r s h i p m a t r i x  
21 " " "  
22 f o r e l e m e n t _ i d i n e l e m e n t s  .  k  e  y  s  (  )  :  
23 m e m b e r s h i p  [  e l e m e n t _ i d  ] = n  u  m b e r _ o f _ c l u s t e r s  
24 r e t u r n m e m b e r s h i p  

Listing 3.20 Elements manipulation methods 

The function elements_in_area returns the objects that are within the neighbor-
hood, which means that the distance between the object and other objects is less than 
. ε. The function filter_visited returns the distance vector where all objects 
that have been assigned are removed from the vector. Two functions that manipulate 
the status of an object: set_visited that sets the cluster number to the object, 
and set_as_noise that assigns the value .−1 to the objects. The value.−1 in this 
method means noise. 

Closest objects 

The closest objects are grouped into one cluster. We take one object randomly from 
the data set and find the objects where the distance is less than . ε (see the Listing 
3.21). 

1 d e f g e t _ c l o s e s t _ e l e m e n t s  (  d  i s t a n c e _ m a  t r i x  , e l e m e n t _  i d  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s t  h  e c  l  o  s e t s o b j e c t s t  o t  h  e o  n  e  

g  i  v  e  n a  s p a r a m e t e r  
4 

5 :  p  a  r  a  m d  i  s  t  a  n  c  e  _  m  a  t  r  i  x  : d  i  s  t  a  n  c  e m a t r i x  
6 :  p  a  r  a  m e l e m e n t _ i d  : m  e  a  s  u  r  e  d o b j e c t i  d  
7 :  r  e t u r n  : m  e m b e r s h i p m a t r i x  
8 " " "  
9 e l e m e n t _ d i s t a n c e s = d  i s t a n c e _ m a t r i x  [  e l e m e n t _ i d  ]  

10 f i l t e r e d = {  }  
11 i t e r = 0  
12 f o r e l e m e n t i n e l e m e n t _ d i s t a n c e s  :  
13 i f e l e m e n t < m  a  x  _  d  i  s t a n c e  :  
14 f i l t e r e d  [  i t e r  ] = e l e m e n t  
15 i t e r = i t e r + 1  
16 r e t u r n f i l t e r e d  

Listing 3.21 Smallest distance elements function
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The method is simple and uses the distance matrix and the element_id that is 
the object we are currently investigating. The function returns a vector of the closest 
objects. 

Build clusters 

The main part of the method is given in the Listing 3.22. We iterate randomly through 
the data set and check if the current objects are already marked with the cluster number 
or noise. If not, we find the closest objects to it. 

1 d e f c  l  u  s  t  e  r  _  d  e  n  s  i  t  y  (  m e m b e r s h i p  )  :  
2 " " "  
3 T h i s i  s t  h  e m a i n d e n s i t y c l u s t e r i n g m e t h o d  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : g l o b a l m e m b e r s h i p m a t r i x  
6 :  r  e t u r n  : m  e m b e r s h i p m a t r i x  
7 " " "  
8 n u m b e r _ o f _ c l u s t e r = 0  
9 d  i  s  t  a  n  c  e  _  m  a  t  r  i  x = c a l c u l a t e _ d i s t a n c e _ m a t r i x  (  )  

10 e l e m e n t _ i d s = l i s t  ( r a n g e  ( l e n  (  d  a t a _ s e t  )  )  )  
11 r a n d o m  .  s h u f f l e  (  e l e m e n t _ i d s  )  
12 f o r i i n e l e m e n t _ i d s  :  
13 i f m e m b e r s h i p  [  i  ] !  = 0  :  
14 c o n t i n u e  
15 c l o s e s t = g e t _ c l o s e s t _ e l e m e n t s  (  d  i  s  t a n c e _ m a t r i x  , i  

) 
16 i f l  e  n  (  c l o s e s t  ) < m i n _ p o i n t s  :  
17 m e m b e r s h i p = s e t  _ a s  _ n o  i s e  (  m  e  m  b  e  r  s  h  i  p  ,  i  )  
18 e l s e  : 
19 m e m b e r s h i p = s e t _ v i s i t e d  (  c  l o s e s t  , m  e  m  b  e  r  s  h  i  p  ,  

n u m b e r _ o f _ c l u s t e r  )  
20 n u m b e r _ o f _ c l u s t e r = n u m b e r _ o f _ c l u s t e r + 1  
21 r e t u r n m e m b e r s h i p  

Listing 3.22 Main clustering method 

In the second loop, we go through the closest objects and check if the distance of 
the objects is less than . ε. In case it is less than . ε we set such an object with the 
set_visited function with the current cluster number. The number of clusters 
increases in each loop. In Fig. 3.5 we have two clusters marked with triangles and 
squares. The noise is the object without any other object in the neighborhood and is 
marked with a red x. The green triangle is the only border object, because there are 
fewer objects in the neighborhood than min_points. 

Example 5 (Aircrafts density clustered) In this example, for comparison reasons of 
the quality metrics explained in the next section, we use the same data set as in the 
previous examples in the clustering part of this book. 

In the first step, we calculate the distance matrix that is the same in the Example 
4. Next, we choose one randomly chosen element and get the lowest distances. Let 
the chosen object be . x3. We get the following distance vector: 

.dx3 = [
0.14 0.16 0.23 0.0 0.04 0.14 1.14 1.21 0.99 0.39

]
.
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Fig. 3.5 DBScan explained 
with.ε = 0.2 and minimal 
points set to 2. Two clusters 
marked with blue triangles 
and squares. The green 
triangle is the border point. 
Outlier is marked with 
orange square 

We include all objects where the distance is below the max_distance into a 
cluster. If the max_distance (. ε) is  .0.25 then we have four other objects within 
this cluster: .x0, x1, x2, x4, x5, x6. We mark all as the first cluster. In the next step, we 
could randomly choose . x9. There are no other objects that are close enough: 

. dx9 = [
0.49 0.45 0.415 0.394 0.354 0.357 0.746 0.821 0.632 0

]
.

This object is marked as noise. In the next loop, we choose . x7: 

. dx7 = [
1.303 1.254 1.191 1.215 1.175 1.162 0.086 0 0.431 0.821

]
.

We take an object as border object if it is below min_points. This cluster consists 
of two border objects, because there is only one neighborhood object for .x6 and . x7. 
The remaining object .x8 is marked as noise because the distance from other objects 
is greater than . ε as in the case of . x9. The final result looks as given in Fig. 3.6. We  
have two objects marked as noise and two clusters. The first cluster is marked with 
blue triangles and consists of five objects. The second one is marked with red squares 
and consists of two border objects. 

3.3.2 Comparison to Hierarchical and Distributed Clustering 

The comparison of all three group methods can be done on a few levels. The advantage 
of distributed methods is the simplicity and different variations as a fuzzy and possible 
approach. The disadvantage is the . k value that must be set before the clustering is 
carried out and limit the number of clusters to . k. In hierarchical methods, we can
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Fig. 3.6 DBScan used on 
Aircraft data set with 
.ε = 0.25 and min_points 
set to 2 

choose the number of clusters that are in our interest. We can choose from many 
small clusters or choose two clusters. The hierarchical methods are parameterless. 
The density methods depend on two parameters, where. ε if greater, there is less cluster 
we get. A lower value of . ε generates a greater number of clusters. The disadvantage 
is that it might be hard to predict how many clusters we get, and we still need to set 
two parameters. 

3.4 Quality and Validation Methods in Unsupervised 
Learning 

Finding the best clustering method is not an easy task. To make this task easier, we can 
use multiple validation methods. The most important factors are the homogeneity and 
heterogeneity of a clustering method. Homogeneity means that each element within a 
cluster should be similar to each other. The more each element is similar to each other, 
the better method. An example of a similarity measure can be a distance method such 
as the Euclidean distance. Heterogeneity is about the difference between each cluster. 
Elements of each cluster should be varied compared to elements of the other clusters. 
The question here is what the value of similarity means that the method is good? We 
can compare the similarities between each method and distinguish which method 
gives the best results. Another possibility is to use one of the commonly known 
validation methods. In this section, we explain the group of validation methods in 
this section. Before we come to this point, we answer another tricky question: how 
many clusters should we have? In previous examples, we could decide on the basis 
of a plot of elements of a given problem. Real-world clustering problems can be a
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bit more complex, and it can be difficult to choose the best number of clusters. In the 
next section, we give some advice on how to choose the right number of clusters. 

3.4.1 Heterogeneity and Homogeneity 

Some of the quality metrics are known as separation and dispersion measures. Such 
metrics tell us, for example, how far objects are from the center of a cluster. This 
measure should be the smallest possible to consider the clustering method to be good. 
The ideal case would be to have the objects very close, or even at the same point 
as the center. In real-world examples, it is hard for all objects to be so close to the 
center of a cluster. The two homogeneity metrics that we explain here are marked as 
.σ1 and. σ2. Both are related to the differences within each cluster. The differences are 
known as dispersion measures within a cluster. As we do some calculations within 
the cluster, we need to refer to the cluster center. The equation of the average object 
dispersion is as follows: 

.σ1(ci ) = 1

m

∑
x1,x2∈ci

d2(x1, x2), (3.14) 

where the .m is defined as 

.m = (ni − 1)ni
2

. (3.15) 

The .ni is the count of objects within the .i-th cluster. If we have two clusters, we 
calculate two dispersion measures. σ1, one for each cluster. The value of this measure 
is the sum of the Euclidean distances squared between each object within the cluster 
divided by . m. It can be easily implemented in Python as shown in Listing 3.23. 

1 d e f c a l c u l a t e _ s i g m a _ 1  (  m e m b e r s h i p  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s s i g m a 1 q u a l i t y m e t r i c  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
6 :  r  e t u r n  : s i g m a 1 v a l u e s  
7 " " "  
8 s i g m a _ 1 = [  ]  
9 u n i q u e _ l a b e l s = l e n  (  m e m b e r s h i p  [  0  ]  )  

10 

11 f o r l a b e l _ i d i  n r a n g e  (  u  n i q u e _ l a b e l s  )  :  
12 i  d  s = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , l  a  b  e  l  _  i  d  ] =  = 1  )  [  0  ]  
13 i f l  e  n  ( i  d  s  ) =  = 1  :  
14 s i g m a _ 1  .  a p p e n d  (  1  .  0  )  
15 c o n t i n u e  
16 e l s e  : 
17 m = (  l e n  ( i  d  s  )  − 1 . 0 )  ∗ l e n  ( i  d  s ) / 2  .  0  
18 e l e m e n t s = d a t a _ s e t  [  i  d  s  ]  
19 s  i  g  m  a = ( 1 . 0 / m  )  
20 f o r e l e m e n t _ x _ 1 i  n r a n g e  ( l e n  (  e  l e m e n t s  )  )  :  
21 f o r e l e m e n t _ x _ 2 i  n r a n g e  ( l e n  (  e  l e m e n t s  )  )  :  
22 i f e l e m e n t _ x _ 1 =  = e  l e m e n t _ x _ 2  :  
23 c o n t i n u e  
24 d  i  s  t  a  n  c  e = c a l c u l a t e _ d i s t a n c e  (  e  l  e  m  e  n  t  s
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25 [  e l e m e n t _ x _ 1  ]  , e  l  e  m  e  n  t  s  [  e  l e m e n t _ x _ 2  ]  )  
26 i f d i s t a n c e !  = 0  :  
27 s i g m a = s  i g m a + (  d  i  s  t  a  n  c  e ∗ ∗  2 )  
28 s i g m a _ 1  .  a p p e n d  (  s  i  g  m  a  )  
29 r e t u r n s i g m a _ 1  

Listing 3.23 .σ1 index calculation method 

The method calculate_sigma_1 uses some private variables like 
__assignation and __points. The first variable is the result of the clustering 
method and is a matrix of size .k × m, where .m is the number of objects and . k is 
the number of clusters. In the case of k-means, we have the matrix filled with values 
from the set of .0, 1. We have three for loops as we calculate the distance between 
two points for each center (unique_labels). We use the same distance measure 
as described in Chap. 2. The second dispersion measure is marked as . σ2. Here, we 
calculate the distance power between each object . x within a cluster and the center 
of the cluster . ci . We divide the result by the count of objects within the cluster. The 
equation is as follows: 

.σ2(ci ) = 1

ni

∑
x∈ci

d2(x, ci ). (3.16) 

It looks a bit simpler compared to . σ1. In both cases, the smallest value demonstrates 
a better clustering result. The metric can be implemented as shown in Listing 3.24. 

1 d e f c a l c u l a t e _ s i g m a _ 2  (  c e n t e r s  , m e m b e r s h i p  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s s i g m a 2 q u a l i t y m e t r i c  
4 

5 :  p  a  r  a  m c e n t e r s  : c  l u s t e r s c e n t r o i d s  
6 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
7 :  r  e t u r n  : s i g m a 2 v a l u e s  
8 " " "  
9 s i g m a _ 2 = [  ]  

10 

11 f o r c e n t e r _ i d i  n r a n g e  ( l e n  (  c e n t e r s  )  )  :  
12 i  d  s = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , c e n t e r _ i d  ] =  = 1  )  [  0  ]  
13 e l e m e n t s = d a t a _ s e t  [  i  d  s  ]  
14 s i g m a = 1  .  0 / l e n  ( i  d  s  )  
15 f o r e l e m e n t _ i d i  n r a n g e  ( l e n  (  e  l e m e n t s  )  )  :  
16 d  i  s  t  a  n  c  e = c a l c u l a t e _ d i s t a n c e  (  e  l  e  m  e  n  t  s  
17 [  e  l e m e n t _ i d  ]  , c e n t e r s  [  c e n t e r _ i d  ]  )  
18 i f d i s t a n c e !  = 0  :  
19 s i g m a = s  i g m a + (  d  i  s  t  a  n  c  e  )  ∗ ∗  2 
20 s i g m a _ 2  .  a p p e n d  (  s  i  g  m  a  )  
21 r e t u r n s i g m a _ 2  

Listing 3.24 .σ2 index calculation method 

In this case we iterate only through two loops: the centroids and elements within 
centroid’s cluster. The distance measure is exactly the same as in the previous metrics. 
We can also use different distance metric, but we use the Euclidean distance as the 
most common one. Measures similar to .σ1 and.σ2 are the total dispersion measures. 
These metrics provide a better understanding of the recurrence of objects within a 
cluster and feature space. Both metrics are just sums of dispersion measures .σ1 and 
. σ2. We mark it with .r(σ1) and .r(σ2) and calculate it as follows:
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.r(σ1) =
K∑
i=1

σ1(ci ), (3.17) 

.r(σ2) =
K∑
i=1

σ2(ci ). (3.18) 

Small values of.r(σ1) and.r(σ2) mean a high recurrence of objects within the feature 
space. Higher values mean exactly the opposite. 

We have four separation measures .s1(ci , c j ), .s2(ci , c j ), .s(s1), and.s(s2). The first 
two separation measures explain how far apart the clusters are from each other. We 
measure it for each pair of centroids. The metric .s1 can be calculated as follows: 

.s1(ci , c j ) = 1

nin j

√ ∑
x1,∈ci ,x2∈c j

d2(x1, x2). (3.19) 

We take two objects, each from different clusters, and calculate the power distance 
measure. Next, we sum all the distances from the object of two clusters and calculate 
the square root of it. The value is then divided by the multiplication of the counts of 
objects in both clusters. As shown in the Listing 3.25 we have this time three loops. 
In two we get objects of centroids, and in the other two, we get the distance between 
those objects. 

1 d e f c  a  l  c  u  l  a  t  e  _  s  _  1  (  c e n t e r s  , m e m b e r s h i p  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s s  1 q  u  a  l i t y m e t r i c  
4 

5 :  p  a  r  a  m c e n t e r s  : c  l u s t e r s c e n t r o i d s  
6 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
7 :  r  e t u r n  : s  1 v a l u e s  
8 " " "  
9 s 1 = [  ]  

10 f o r c e n t e r _ 1 i  n r a n g e  ( l e n  (  c e n t e r s  )  )  :  
11 f o r c e n t e r _ 2 i  n r a n g e  ( l e n  (  c e n t e r s  )  )  :  
12 i f c e n t e r _ 1 =  = c  e n t e r _ 2  :  
13 b r e a k  
14 i  d  s  _  1 = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , c  e  n  t  e  r  _  1  ] =  =  

1  )  [ 0 ]  
15 i  d  s  _  2 = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , c  e  n  t  e  r  _  2  ] =  =  

1  )  [ 0 ]  
16 e l e m e n t s _ 1 = d  a  t  a  _  s  e  t  [  i  d  s  _  1  ]  
17 e l e m e n t s _ 2 = d  a  t  a  _  s  e  t  [  i  d  s  _  2  ]  
18 s _ 1 = 1 . 0 / (  l e n  (  i d s _ 1  ) ∗ l e n  (  i  d s _ 2  )  )  
19 f o r e l e m e n t _ 1 i n e l e m e n t s _ 1  :  
20 f o r e l e m e n t _ 2 i n e l e m e n t s _ 2  :  
21 s _ 1 = s _ 1 ∗ s  q  r  t  (  c a l c u l a t e _ d i s t a n c e  
22 (  e l e m e n t _ 1  , e l e m e n t _ 2  )  ∗ ∗  2 )  
23 s  1  .  a p p e n d  (  s  _  1  )  
24 r e t u r n s 1  

Listing 3.25 .s1 index calculation method 

The second separation measure is about the distance between two centroids: 

.s2(ci , c j ) = d(ci , c j ). (3.20)
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It is the simplest measure to date, since it uses only the distance between two centers. 
The third separation measure uses the dispersion measure. σ1. It is a simple  sum of a  
division of .s1 for two centroids and .σ1 for centroid . ci : 

.s(s1) =
K∑

i, j=1; j �=i

s1(ci , c j )

σ1(ci )
. (3.21) 

This measure takes into account the entire feature space. The sums can be easily 
calculated if we already have .s1 and .σ1 as shown in the Listing 3.26. 

1 d e f c  a  l  c  u  l  a  t  e  _  s  _  s  _  1  (  s  1  , s i g m a _ 1  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s s  (  s  1  ) q  u  a  l i t y m e t r i c  
4 

5 :  p  a  r  a  m s  1  : s  1 m e t r i c v a l u e s  
6 :  p  a  r  a  m s i g m a _ 1  : s i g m a 1 m e t r i c v a l u e s  
7 :  r  e t u r n  : s  (  s  1  ) v a l u e s  
8 " " "  
9 s _ 1 _ s u m = 0  .  0  

10 s i g m a _ 1 _ s u m = 0  .  0  
11 f o r s _ 1 i n s 1  :  
12 s _ 1 _ s u m = s _ 1 _ s u m + s  _  1  
13 f o r s i g m a _ 1 i n s i g m a _ 1  :  
14 s i g m a _ 1 _ s u m = s i g m a _ 1 _ s u m + s  i  g  m a _ 1  
15 s _ s 1 = s _ 1 _ s u m / s i g m a _ 1 _ s u m  
16 r e t u r n s _ s 1  

Listing 3.26 .s(s1) index calculation method 

The last measure is also simple. It is a sum of measures . s2: 

.s(s2) =
K∑

i, j=1; j �=i

s2(ci , c j ) (3.22) 

We do not need to calculate all the measures to know if our clustering method 
is performing well. In most cases, we can use just a few or one. Especially .r(σ2) is 
used very often. There are also some other metrics that are called indices and are 
explained later. Both are the most popular ones. 

Example 6 (Aircrafts clustering methods quality) In this example we explain the 
measures described above based on the Example 1 shown in the k-means section. 
The heterogeneity and homogeneity measures cannot be used for all clustering meth-
ods. Some methods need cluster centroids, and only distributed methods provide 
centroids. Technically, it is possible to calculate the centroids based on an already 
clustered data set using different methods, but in this section we stick to the k-means 
examples. Let us assume that we also have done a k-means clustering with . k = 3
and have the results of the membership matrix as 

.U =
⎡
⎣0 0 0 0 0 0 0 0 1
1 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0

⎤
⎦ ,
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and the centroids as 

. V =
⎡
⎣0.422 0.385
0.078 0.178
0.829 0.970

⎤
⎦ .

The dispersion measure .σ1 for the k-mean method with .k = 2 would be 

. m1 = (7 − 1) ∗ 7

2
= 21,

. m2 = (3 − 1) ∗ 3

2
= 3,

. σ hcm2
1 (c1) = 1

21
∗ 2.728 = 0.1299,

. σ hcm2
1 (c2) = 1

3
∗ 0.63529 = 0.2118.

The results are given for each cluster. That is why we have only two values in the 
first cases, and three in the case of three clusters: 

. m1 = (6 − 1) ∗ 6

2
= 15,

. m2 = (3 − 1) ∗ 3

2
= 3,

. m3 = (1 − 1) ∗ 2

2
= 0,

. σ hcm3
1 (c1) = 1

15
∗ 0.6830 = 0.0455,

. σ hcm3
1 (c2) = 1

3
∗ 0.63529 = 0.2118,

. σ hcm3
1 (c3) = 0.

The lower value means a better cluster, but the last cluster of the .k = 3 k-means 
method is equal to 0. We have only one object in this cluster and it shouldn’t be 
compared to other clusters. The second conclusion is that when one of the objects 
was removed from the first cluster in the .k = 3 clustering, the dispersion measure 
decreased about three times compared to the first group in the .k = 2 group. This 
cluster should also be considered the best based on the dispersion measure . σ1. The  
second measure of dispersion takes the distance between the objects and the centroid 
of a cluster:
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. σ hcm2
2 (c1) = 1

7
∗ 0.1948 = 0.0278,

. σ hcm2
2 (c2) = 1

3
∗ 0.10588 = 0.03529.

Again, in the first cluster the objects are closer to the centroid compared to other 
clusters. We get similar results for .k = 3: 

. σ hcm3
2 (c1) = 1

7
∗ 0.0569 = 0.0278,

. σ hcm3
2 (c2) = 1

3
∗ 0.10588 = 0.03529,

. σ hcm3
2 (c3) = 0.

The separation measure. s1 gives a better understanding of how the clusters are related 
to each other. In other words, how are good clusters different from other clusters. 
We calculate this measure for .k = 2 and .k = 3 as the previous metrics. For . k = 2
we compare just the two clusters: 

. shcm2
1 (c1, c2) = 1

7 ∗ 3
∗ √

23.8735 = 0.2327.

We can compare the result only with other clusters that we get using k-means with 
.k = 3: 

. shcm3
1 (c1, c2) = 1

6 ∗ 1
∗ √

1.0225 = 0.1685,

. shcm3
1 (c2, c3) = 1

3 ∗ 1
∗ √

1.6307 = 0.42566,

. shcm3
1 (c1, c3) = 1

6 ∗ 3
∗ √

22.2428 = 0.262.

The second and third clusters in k-means with .k = 3 clustering are different when 
we compare both. 

3.4.2 Number of Clusters 

The number of clusters can be chosen using the elbow method [ 10]. The goal of this 
method is to choose many values of . k and calculate the error rate using one of the 
methods explained in the previous section or the internal indices explained in the 
next section. Based on the result of each execution, we can plot a graph that looks as
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shown in Fig. 3.7. At some point in this graph, increasing the number. k gives a lower 
error rate. The error rate is next at a similar level for the next values of. k. This means 
that the best . k in Fig. 3.7 would be 6, because for the next values of . k the error rate 
is similar or the changes are very low. Choosing the appropriate value of . k can be 
done automatically. One of such an approach is presented in X-means [ 11]. A good 
practice is also to obtain .r(σ2) as the error rate on the . y axis. It behaves similarly to 
the graph as shown in Fig. 3.7. 

3.4.3 Internal and External Indices 

Internal and external indices are another type of measure. The difference between 
the internal and external indices depends on the information used to calculate the 
index. The internal indices are based only on the training data set. External indices 
use the labels and testing data set [ 12– 19]. We can use the typical quality metrics 
known from supervised learning. Usually, we do not have the labels available for 
verification of the clustering method. This is why in this section we focus on internal 
indices. One of the most popular is called the Dunn index [ 20]. The Dunn index can 
be easily calculated as a quotient of two distances: 

.C = dmin

dmax
, (3.23) 

where the equations of .dmax and .dmin are as follows: 

.dmax = max
1≤k≤K

Dk, (3.24) 

.dmin = min
k �=k ′ dk . (3.25) 

Fig. 3.7 Choosing the 
proper. k number of clusters
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Both distances are just the minimum and maximum Euclidean distances between 
objects. The minimum distance is a measure of two objects that are in different 
clusters: 

.dk = min
i, j∈Ik ;i �= j

d(x (k)
i − x (k ′)

j ) (3.26) 

The clusters are marked with . k and . k ′. The maximum distance takes the distance of 
two objects within the cluster: 

.Dk = max
i, j∈Ik ;i �= j

d(x (k)
i − x (k)

j ) (3.27) 

.Dk and .dk values are calculated for each cluster . k, but in the Dunn index, we take 
only the highest value of.Dk and the lowest value of. dk . It can be calculated in Python 
as shown in Listing 3.27. 

1 d e f d u n n _ i n d e x  (  m e m b e r s h i p  )  :  
2 " " "  
3 T h i s m  e t h o d c a l c u l a t e s d  u  n  n i  n  d  e  x q  u  a  l i t y m e t r i c  
4 

5 :  p  a  r  a  m m e m b e r s h i p  : m e m b e r s h i p m a t r i x  
6 :  r  e t u r n  : d u n n i  n  d  e  x v a l u e s  
7 " " "  
8 m i n i m u m _ d i s t a n c e = 1  
9 m a x i m u m _ d i s t a n c e = 0  

10 u  n  i  q  u  e  _  l  a  b  e  l  s = n  p  .  u n i q u e  (  m e m b e r s h i p  [ 0 ] )  
11 # @  T O D O  
12 f o r l a b e l _ i d _ 1 i  n r a n g e  ( l e n  (  u  n i q u e _ l a b e l s  )  )  :  
13 i  d  s  _  1 = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , l a b e l _ i d _ 1  ] =  = 1  )  

[ 0 ]  
14 f o r l a b e l _ i d _ 2 i  n r a n g e  ( l e n  (  u  n i q u e _ l a b e l s  )  )  :  
15 i f l a b e l _ i d _ 1 =  = l a b e l _ i d _ 2  :  
16 b r e a k  
17 i  d  s  _  2 = n  p  .  w  h  e  r  e  (  m e m b e r s h i p  [  :  , l a b e l _ i d _ 2  ] =  =  

1  )  [ 0 ]  
18 f o r e l e m e n t _ 1 i n d a t a _ s e t  [  i  d  s  _  1  ]  :  
19 f o r e l e m e n t _ 2 i n d a t a _ s e t  [  i  d  s  _  2  ]  :  
20 d  i  s  t  a  n  c  e = c a l c u l a t e _ d i s t a n c e  
21 (  e l e m e n t _ 1  , e l e m e n t _ 2  )  
22 i f d  i  s  t  a  n  c  e > m a x i m u m _ d i s t a n c e  :  
23 m a x i m u m _ d i s t a n c e = d  i  s  t  a  n  c  e  
24 i f d  i  s  t  a  n  c  e < m i n i m u m _ d i s t a n c e  :  
25 m i n i m u m _ d i s t a n c e = d  i  s  t  a  n  c  e  
26 d u n n _ i n d e x = m  i  n  i  m  u  m  _  d  i  s  t  a  n  c  e / m  a  x  i  m  u  m  _  d  i  s  t  a  n  c  e  
27 r e t u r n d u n n _ i n d e x  

Listing 3.27 Dunn index calculation method 

In the Listing 3.27 we loop over the clusters and calculate the minimum (minimum_ 
distance) and maximum (maximum_distance) distances. Both are used to 
calculate the. C . In this case, higher values mean better clustering results. Compared 
to the heterogeneity measures, we take all clusters into account and get the results of 
the whole method instead of comparing each cluster with each other. It means that 
there is one value for the clustering method independent of the . k value. 

Example 7 (Dunn index of aircraft data set clustering) We calculate the minimum 
and maximum distance values between the objects within the cluster and obtain the 
maximum value, in general .dmax. Same for the minimum. For the k-mean aircraft
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data set and .k = 2 we get 

. Chcm2 = 0.63237

1.30295
= 0.48534,

. Chcm3 = 0.35409

0.49011
= 0.72248.

The values are taken from the distance matrix. As expected, the second case is almost 
50% better than the previous clustering. At some point, as the value of . k increases, 
the value of .C will increase slower, and that is a good metric to determine the best 
value of . k. This applies also to other clustering methods as distributed clustering 
methods. 

3.5 Image Segmentation 

Clustering is usually used in image segmentation. In the current example, we use 
the logo of Jagiellonian University in Krakow (see Fig. 3.8a) to segment it into three 
groups. To fulfill this task, we use the k-means clustering method. The image is 232 
pixels in width and 258 pixels in height. The segmentation process is divided into 
the following steps: 

1. convert image into a numpy matrix, 
2. select the . k value, 
3. generate group centers in three-dimensional RGB space, 
4. use k-means to segment the numpy matrix, 
5. save the result as output image. 

The only difference compared to the k-means algorithm is the part dedicated to image 
processing. 

3.5.1 Preprocessing 

In the Listing 3.28 there is an example of an image conversion class is presented. 
We need to convert an image into a matrix that can be used for a calculation in 
Python. Each pixel is represented by three values of the RGB model. The image can 
be represented as a three-dimensional matrix or as three two-dimensional matrices. 
There are.2553 different colors available, and we have a space of.232 ∗ 258 to analyze. 
This means that a lot of pixels need to be analyzed. To reduce the calculation, we can 
get the colors that are available on the image as some colors are repeated very often 
on the image. This dramatically reduces the number of calculations needed. In our 
example, depending on the precision, we have 59,856 or 256 unique colors. To get
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256 unique colors, we need to limit the precision to two decimals. To obtain unique 
colors, we can implement a method as shown in the Listing 3.28. 

1 c l a s s I m a g e C o n v e r s i o n  :  
2 

3 d e f g e t _ i m a g e _ f r o m _ u r l  (  s e l f  , i  m  g  _ u r l  )  :  
4 " " "  
5 T h i s m e t h o d l  o  a  d  s t  h  e i  m  a  g  e a  n  d r  e t u r n s i  t  .  
6 

7 :  p  a  r  a  m i m g _ u r l  : i  m  a  g  e p  a  t  h  
8 :  r  e t u r n  : r e t u r n s t  h  e i  m  a  g  e a  s a P i l l o w i  m  a  g  e  
9 " " "  

10 i m a g e = o p e n  (  i m g _ u r l  ,  ’ r  b  ’  ) 
11 r e t u r n i  m  g  .  i m r e a d  (  i  m  a  g  e  )  
12 

13 d e f g e t _ u n i q u e _ c o l o r s  (  s e l f  , i  m  a g e _ m a t r i x  )  :  
14 " " "  
15 T h i s m e t h o d g e t s t  h  e u n i q u e c o l o r s i  n t  h  e i  m  a  g  e  

a  n  d r e t u r n s i  s a  s a m a t r i x  .  
16 

17 :  p  a  r  a  m i m a g e _ m a t r i x  : i  m  a  g  e p i x e l s  
18 :  r e t u r n  : r e t u r n s t  h  e u n i q u e c o l o r s a  n  d a  l  l p i x e l s  
19 " " "  
20 

21 p i x e l _ m a t r i x = [  ]  
22 f o r i i  n r a n g e  ( l e n  (  i  m a g e _ m a t r i x  )  )  :  
23 p i x e l _ m a t r i x = p  i x e l _ m a t r i x + i  m a g e _ m a t r i x  
24 [  i  ]  .  t o l i s t  (  )  
25 p  i  x  e  l  _  m  a  t  r  i  x  _  n  p = n  p  .  a  r  r  a  y  (  p  i x e l _ m a t r i x  )  
26 u n i q u e s  , i  n  d  e  x = n  p  .  u n i q u e  (  [  s t r  ( i ) f o r i i n  

p i  x  e  l  _  m  a  t  r  i  x  _  n  p  ]  , r e t u r n _ i n d e x  =  T  r  u  e  )  
27 r e t u r n p  i  x  e  l  _  m  a  t  r  i  x  _  n  p  [  i  n  d  e  x  ]  , p i x e l _ m a t r i x  
28 

29 d e f s a v e _ i m a g e  (  s e l f  , i  m  a  g  e  _  s  h  a  p  e  , p i x e l _ m a t r i x  ,  
u n i q u e _ m a t r i x  , m e m b e r s h i p _ m a t r i x  , c  o  l  o  r  s  , o  u t p u t _ p a t h  
) :  

30 " " "  
31 T h i s m e t h o d g e t s t  h  e i  m  a  g  e s i z e a  n  d p  i  x  e  l  s  ,  

a s s i g n e a c h p  i  x  e  l t  o o  n  e o  f e a c h  
32 c l u s t e r a  n  d s a v e t  h  e s e g m e n t e d i  m  a  g  e  
33 

34 :  p  a  r  a  m i m a g e _ s h a p e  : t  h  e o u t p u t i  m  a  g  e s  h  a  p  e  
35 :  p  a  r  a  m p i x e l _ m a t r i x  : i  m  a  g  e p i x e l s  
36 :  p  a  r  a  m u  n  i  q  u  e  _  m  a  t  r  i  x  : u n i q u e c o l o r s m a t r i x  
37 :  p  a  r  a  m m e m b  e r s h i  p _ m a t  r i x  : t  h  e m  e m b e r s  h i p s m a t r i x  

o  f e a c h u  n  i q u e c  o  l  o  r  
38 :  p  a  r  a  m c o l o r s  : t  h  e c l u s t e r c o l o r s  
39 :  p  a  r  a  m o u t p u t _ p a t h  : i  m  a  g  e p  a  t  h t  o b  e s  a  v  e  d  
40 :  r  e t u r n  : N o n e  
41 " " "  
42 i m a g e _ o u t = I  m  a  g  e  .  n  e  w  (  " R  G  B  "  , i  m a g e _ s h a p e  )  
43 c o l o r s = (  n  p  .  a  r  r  a  y  (  c o l o r s  )  ∗ 2  5  5  )  .  a s t y p e  (  i n t  ) .  

t o l i s t  (  )  
44 c o l o r _ m e m b e r s h i p _ i d = 0  
45 f o r u n i q u e i n u  n  i  q  u  e  _  m  a  t  r  i  x  .  t o l i s t  (  )  :  
46 i n d i c e s = n  p  .  w  h  e  r  e  (  (  p  i  x e l _ m a t r i x  [  :  ,  0  ] =  =  

u n i q u e  [ 0 ] ) & (  p  i  x  e l _ m a t r i x  [  :  , 1  ] =  = u n i q u e  [  1  ]  ) &  
47 (  p i x e l _ m a t r i x  [  :  ,  2  ] =  = u n i q u e  [  2  ]  )  )  
48 p i x e l _ m a t r i x  [  i n d i c e s  [  0  ]  .  t o l i s t  (  )  ] = t u p l e  
49 (  c o l o r s  [  n  p  .  a  r  r  a  y  (  m  e  m  b e r s h i p _ m a t r i x  [  

c  o  l  o  r  _  m  e  m  b  e  r  s  h  i  p  _  i  d  ]  )  .  a r g m a x  (  )  ]  )  
50 p r i n t  (  n  p  .  a  r  r  a  y  (  m e m b e r s h i p _ m a t r i x  [  

c  o  l  o  r  _  m  e  m  b  e  r  s  h  i  p  _  i  d  ]  )  .  a r g m a x  (  )  )  
51 c o l o r _ m e m b e r s h i p _ i d = c o l o r _ m e m b e r s h i p _ i d + 1  
52 p i x e l _ m a t r i x = p i x e l _ m a t r i x  .  a s t y p e  (  i n t  )
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53 p i x e l s = [  t u p l e  ( x ) f o r x i n p i x e l _ m a t r i x  .  t o l i s t  (  )  
] 

54 

55 i m a g e _ o u t  .  p u t d a t a  (  p i x e l s  )  
56 i m a g e _ o u t  .  s a v e  (  o u t p u t _ p a t h  )  

Listing 3.28 Image convertion class 

The ImageConversion class consists of three methods. The first method 
get_image_from_url reads the image and returns the handle to the object in 
the image. The second get_unique_colours loops over the image matrix and 
obtains the unique pixel colors. The last method saves the image based on the pixel 
matrix and unique colors. It uses the group color assigned to the unique color to draw 
the final image. The result is an image consisting of . k colors. In our example, we 
have only three colors that are the centroids. 

3.5.2 Selecting the Number of Clusters 

The next step can be implemented as a method shown in the Listing 3.29. We can 
easily judge, based on the image shown in Fig. 3.8a, that the valid value of . k is 3. 

1 d e f c a l c u l a t e _ d i s t a n c e  (  s e l f  ,  x  , v  )  :  
2 " " "  
3 T h i s m e t h o d c a l c u l a t e s t  h  e E u c l i d e a n d i  s t  a  n  c  e  

b e t w e e n o  b j e c t x a  n  d v  .  
4 

5 :  p  a  r  a  m x  : f  i  r  s  t o b j e c t  
6 :  p  a  r  a  m v  : s e c o n d o b j e c t  
7 :  r  e t u r n  : E u c l i d e a n d i s t a n c e  
8 " " "  
9 r e t u r n m a t h  .  s q r t  (  (  x  [  0  ]  − v  [ 0 ] )  ∗ ∗  2 + (  x  [  1  ]  − v  [  1 ] )  ∗ ∗  2 +  

10 (  x  [ 2 ]  − v  [ 2 ] )  ∗ ∗  2 )  

Listing 3.29 Euclidean distance for more than two points 

We select three groups centers in three-dimensional space. The goal here is to find 
three colors that are the centers of each group. 

3.5.3 Distributed Clustering-Based Segmentation 

We calculate the membership vector of each pixel by analyzing only the colors in the 
image. The final code that combines all the steps can be found in the Listing 3.30. 
The class Segmentation is a modified version of the implementation of k-means 
from Sect. 3.1. The modifications are adjustments to work with three clusters. 

1 i m a g e _ t o _ s e g m e n t = "  <  p a t h  >  "  
2 i m a g e _ c o n v e r t e r = I  m a g e C o n v e r s i o n  (  )  
3 i m a g e _ d a t a = i  m  a  g  e  _  c  o  n  v  e  r  t  e  r  .  g  e t _ i m a g e _ f r o m _ u r l  
4 (  i  m a g e _ t o _ s e g m e n t  )  
5 u n i q u e _ i m a g e _ d a t a  , i  m  a  g  e  _  d  a  t  a  _  l  i  s  t = i  m  a  g  e  _  c  o  n  v  e  r  t  e  r  .  

g e t _ u n i q u e _ c o l o r s  (  i  m a g e _ d a t a  )  
6
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7 g r o u p s = 3  
8 

9 i f i m a g e _ d a t a  .  s  h  a  p  e  [  2  ] > 3  :  
10 i m a g e _ d a t a = i m a g e _ d a t a  [  :  ,  :  ,  [  0  ,  1  , 2 ] ]  
11 u n i q u e _ i m a g e _ d a t a = u n i q u e _ i m a g e _ d a t a  [  :  ,  [  0  ,  1  ,  2  ]  ]  
12 i m a g e _ d a t a _ l i s t = n  p  .  a  r  r  a  y  (  i m a g e _ d a t a _ l i s t  )  

[ :  , [ 0  ,  1  ,  2 ] ]  
13 

14 s  e g m  e n t  a t i o  n = S e g  m e n t  a t i  o n  (  u n i q  u e _ i  m a g e _  d a t a  , g r o u p s  )  
15 s e g m e n t a t i o n  .  d  o  _  s  e  g  m  e  n  t  a  t  i  o  n  (  )  
16 c e n t e r s  , m e m b e  r s h i p  _ m a t  r i x = s  e g m e n t a t i o n  .  g  e  t _ r e s  u l t s  (  )  
17 

18 i m a g e _ s i z e = ( 2 3 2  , 2 5 8 )  
19 i  m  a  g  e  _  c  o  n  v  e  r  t  e  r  .  s a v e _ i m a g e  (  i  m  a  g  e  _  s  i  z  e  , i m a  g e _ d a t a _ l i s  t  ,  

u n i q u e _ i m a g e _ d a t a  , m e m b e r s h i p _ m a t r i x  , c  e n t e r s  , "  <  p a t h  
> "  ) 

20 

21 f  i  g = p  y p l o t  .  f i g u r e  (  )  
22 a  x = A  x e s 3 D  (  f  i  g  )  
23 #  a  x  .  s e t _ a s p e c t  (  "  e  q  u  a  l  "  )  
24 x _ c e n t e r s = [  i t e m  [  0  ] f o r i t e m i n c e n t e r s  ]  
25 y _ c e n t e r s = [  i t e m  [  1  ] f o r i t e m i n c e n t e r s  ]  
26 z _ c e n t e r s = [  i t e m  [  2  ] f o r i t e m i n c e n t e r s  ]  
27 

28 x  _  v  a  l  u  e  s = [  i t e m  [  0  ] f o r i t e m i n u n i q u e _ i m a g e _ d a t a  ]  
29 y  _  v  a  l  u  e  s = [  i t e m  [  1  ] f o r i t e m i n u n i q u e _ i m a g e _ d a t a  ]  
30 z  _  v  a  l  u  e  s = [  i t e m  [  2  ] f o r i t e m i n u n i q u e _ i m a g e _ d a t a  ]  
31 a  x  .  s  c a t t e r  (  x _ v a l u e s  , y _ v a l u e s  , z  _ v a l u e s  , c  =  n  p  .  a  r  r  a  y  
32 (  u  n i q u e _ i m a g e _ d a t a  )  ,  a  l  p  h  a  =  0  .  5  )  
33 

34 a  x  .  s  c a t t e r  (  x _ c e n t e r s  , y _ c e n t e r s  , z _ c e n t e r s  , c  =  ’  b  l a c k  ’  , 
m a r k e r  =  ’ s  ’  ,  a  l p h a  =  1  )  

35 

36 a  x  .  s e t _ x l a b e l  (  ’ R  ’  ) 
37 a  x  .  s e t _ y l a b e l  (  ’ G  ’  ) 
38 a  x  .  s e t _ z l a b e l  (  ’ B  ’  ) 
39 

40 p  y  p  l  o  t  .  s h o w  (  )  

Listing 3.30 Example main script 

In lines 13–14 we set the image size and save the segmented image. The input and 
output images are shown in Fig. 3.8. The output presents the assignment of each pixel 
to one of the following groups: 

. • logo background 

. • logo 

. • image background 

We can use segmentation for all images. In this example, we used the RGB model, 
but it can also be used with other color models. 

3.5.4 Centroids in RGB Model 

In the examples in Sect. 3.1 we used a data set with two features. This means that we 
had a two-dimensional feature space. In the image segmentation example, we used
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Fig. 3.8 Image segmentation done using HCM method. One left of the original image is shown. 
On the right is the segmented image. Source https://www.uj.edu.pl/ 

Fig. 3.9 Segmentation pixel 
unique colors set in a 
three-dimensional RGB 
feature space. Pixels are 
marked with a unique color. 
Centroids are marked with 
black squares 

three features. We can draw the centroids and pixel colors in a three-dimensional 
RGB feature space. This plot is given in Fig. 3.9. The centroids are marked with 
black squares. These are our groups that are visible in Fig. 3.8b. We have limited the 
number of unique colors in Fig. 3.9 to 256. 

For Further Reading 

1. Patel AA (2019) Hands-on unsupervised learning using Python. O’Reilly 
2. Johnston B, Jones A, Kruger C (2019) Applied unsupervised learning with Python. 

Packt
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Chapter 4 
Introduction to Shallow Supervised 
Methods 

In this section, we explain a few basic methods. Explaining the simple machine 
learning methods done in the first place makes it easier to understand the more 
complex ones. All the methods presented in this chapter are supervised methods. We 
start with linear classifiers, such as the Fisher classifier. To understand the linearity 
of the classifiers, we discuss the k nearest neighborhood method that is not linear by 
design and compare it to Fisher’s Linear Discriminant method. The last part of the 
linear section is dedicated to two regression methods: linear and logistic regression. 

4.1 Fisher’s Classifier 

Fisher’s Linear Discriminant is also known as Linear Discriminant Analysis [ 1]. The 
idea of Fisher’s classifier is to move the data into a reduced-dimension feature space 
and do the classification there. For example, reducing a two-dimensional feature 
space to a one-dimensional feature space makes the classification easier, because 
instead of a hyperplane in the higher dimension space, we just need to find a point 
on a line in a one-dimensional space. Simplification is not always the right way to 
distinguish between classes. We will show the SVM classifier later where the goal 
is the total opposite and the goal is to add one or more dimensions. The appropriate 
method should be chosen according to the classification problem. 

The goal of Fisher’s classifier is to calculate the between-class variance with 
the class means (.m1,m2), and the within-class variance (.Sw, Si ). The means can be 
calculated as follows: 

.mi = 1

ni

∑

x∈i
x . (4.1) 
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The within-class variance can be calculated as follows: 

.Sw =
K∑

k=1

Ck∑

n=1

Nk(xn − mk)(xn − mk)
T (4.2) 

and 

.Sb =
K∑

k=1

(mk − m)(mk − m)T . (4.3) 

Finally, the weights can be calculated as follows: 

.w = S−1
1 (m+1 − m−1). (4.4) 

The discriminant function can be written as 

.ĝ(x) = wT
F x = (m+1 − m−1)

T S−1
W x, (4.5) 

where: 

.w0 = 1

2
(wTm+1 + wTm−1). (4.6) 

This brings us to the following. 

.ĝ(x) = wT x − w0

{
>0, x ∈ 1,

<0, x ∈ −1.
(4.7) 

Example 1 (Iris dimensionality reduction) The iris data set is a classic one that 
consists of four features and a label. There are three labels, but to simplify this 
example, we use only two labels. In the Listing 4.1 two the data set is loaded in 
lines 3–8. In the lines 10 and 11, the mean values are calculated. It is needed for the 
variances that are calculated in the following lines. The last lines are used to plot the 
plot with data of reduced dimensionality. 

1 from  sklearn  .  datasets  import  load_iris  
2 from  sklearn  import  preprocessing  
3 

4 iris_data  ,  iris_labels  =  load_iris  (  return_X_y  =  True  )  
5 iris_data  =  np.  array  (  preprocessing  .  normalize  (  iris_data  ))  
6 

7 x1  =  iris_data  [np.  where  (  iris_labels  ==  1)  ][:  ,[0  ,1]]  
8 x2  =  iris_data  [np.  where  (  iris_labels  ==  2)  ][:  ,[0  ,1]]  
9 y  =  iris_labels  

10 

11 mean_x1  ,  mean_x2  =  np.  mean  (x1  ,  axis  =0)  ,  np.  mean  (x2  ,  axis  =0)  
12 mean  =  np.  mean  (np.  append  (x1  ,x2))  
13 

14 Sb = np.  sum  ((  mean_x1−mean  )  ∗(  mean_x2−mean  ))  
15 Sw = np.  dot  ((x1−mean_x1  ).T,  (x1−mean_x1  ))+np.  dot  ((x2−mean_x2  ).T,  (x2− 

mean_x2  ))  
16 

17 w  =  np.  dot  (np.  linalg  .  inv  (Sw),  (  mean_x2−mean_x1  ))
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Fig. 4.1 Reduce the dimensionality of the iris data set using Fisher classifier 

18 

19 cov  =  np.  cov  (np.  concatenate  ((  x1.T,x2.T)),ddof  =0)  
20 cov_inv  =  np.  linalg  .  inv  (  cov  )  
21 

22 plt  .  plot  (np.  dot  (x1  ,  w),  [0]∗x1.  shape  [0]  ,  "bo") 
23 plt  .  plot  (np.  dot  (x2  ,  w),  [0]∗x2.  shape  [0]  ,  "go") 

Listing 4.1 Calculating the.Sw and.Sb values 

In Fig. 4.1 the Iris sets are shown. The mapping of a two-dimensional feature 
space (a) to a line (b) is given. The example is not complex, and the distinguishing 
line can be drawn easily, but the threshold that distinguishes between the blue and 
the green objects can be drawn even more easily in a one-dimensional feature space. 

4.2 Nearest Neighborhood Classifiers 

In one sentence, kNN looks for other objects in the neighborhood and assigns the 
most popular label to new objects. The. k in the name is the number of objects that we 
look for labels in the neighborhood. Depending on the number of labels, we should 
set the proper value of. k. For two labels,. k should be an odd value like 3 or 5 to make 
a decision easier. A general discriminant function is set as 

.gi (y) = ki , i = 1, . . . , L , (4.8) 

where . L is the number of classes and .ki is the number of objects of label . i in the 
neighborhood. The sum of .ki is equal to . k, the number of neighborhood objects. 
We choose the label where we have the highest number of labels . ki . The classifier 
algorithm consists of three simple steps: 

• calculate the distance vector between the new object and all objects in our data 
set,
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Fig. 4.2 Two example  of  the same data set  for different. k

• find the closest . k objects with the lowest distance from our new object, 
• assign label to the new object using Eq. 4.8. 

In Fig. 4.2 two example data sets are given with kNN used with.k = 1 (left) and. k = 3
(right). We see that if we set the.k = 1 for the green circle (new object), we assign it 
to the square group. If we extend the neighborhood to.k = 3, we will assign the new 
object to the triangle group. The value. k should be set empirically, depending on the 
data set. 

The distance vector can be calculated in a similar way as it was explained in the 
previous part on clustering methods. The closest object can also be chosen similarly 
to the method implemented in the clustering sections or as in the Listing 4.2. 

1 def  calculate_distance  (x,  v):  
2 """  
3 This  method  calculates  the  Euclidean  distance  between  object  x  and  v.  
4 

5 :  param  x:  first  object  
6 :  param  v:  second  object  
7 :  return  :  Euclidean  distance  
8 """  
9 return  sqrt  ((x  [0]  − v  [0])  ∗∗ 2 + (x  [1]  − v  [1])  ∗∗ 2) 

10 

11 def  calculate_distance_matrix  ():  
12 """  
13 This  method  calculates  the  distance  matrix  between  all  objects  .  
14 

15 :  return  :  A  matrix  of  distances  
16 """  
17 distance_matrix  =  np.  zeros  ((  len  (  data_set  ),len  (  data_set  )))  
18 for  i in  range  ( len  (  data_set  )):  
19 for  j in  range  ( len  (  data_set  )):  
20 distance_matrix  [i,  j]  =  calculate_distance  (  data_set  [i],  

data_set  [j])  
21 return  distance_matrix  
22 

23 def  find_closest_objects  (x,  k):  
24 """  
25 Finds  k  closts  objects  to  x.
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26 

27 :  return  :  A  list  of  objects  ’  ids  .  
28 """  
29 distances  =  []  
30 i = 0  
31 for  item  in  train_set  .  values  :  
32 distances  .  append  ([i,  calculate_distance  (x,  item  )])  
33 i = i + 1  
34 distances  =np.  array  (  distances  )  
35 label_ids  =  distances  [  distances  [:  ,  1].  argsort  ()  ][:k  ,0]  
36 return  [ int  (  item  )  for  item  in  label_ids  ]  

Listing 4.2 Method that returns the closest objects 

The main difference between this method and the ones used for clustering is that 
in the case of kNN, we return a vector of . k with the lowest distance instead of 
just the closest one. It uses the same methods like calculate_distance and 
calculate_distance_matrix that work the same as for the clustering meth-
ods mentioned in the previous chapter. Similarly, find_closest_objects 
method looks for the closest object to the one that we get as an argument. The 
difference is the k as we do not look for just the closest by for the k closest objects. 

1 def  predict  ():  
2 """  
3 Assign  a  label  of  the  most  common  label  in  the  list  of  closest  objects  

. 
4 

5 :  return  :  A  list  of  predictions  .  
6 """  
7 predictions  =  []  
8 for  item  in  test_set  .  values  :  
9 label_ids  =  find_closest_objects  (item ,  k)  

10 counts  =  np.  bincount  (  train_set_labels  .  values  [  label_ids  ])  
11 label  =  np.  argmax  (  counts  )  
12 predictions  .  append  (  label  )  
13 return  predictions  

Listing 4.3 kNN prediction method 

The prediction can be implemented as in Listing 4.3. It just calculates the accuracy— 
the percentage number of properly classified labels divided by the number of all 
objects. Instead of typical accuracy as it is implemented in the scikit-learn package, 
this one counts the number of occurrences of labels and returns the one with the 
maximum occurrences. For binary cases, the k values are usually odd. 

Example 2 (Titanic survival kNN classification) The Titanic data set is another 
classic data set that was originally available on Kaggle. It is also available using 
the Tensorflow library as one of the test data sets. To use it we import the 
tensorflow_datasests and load it as shown in Listing 4.4 lines 7 and 8. 

1 import  numpy  as  np  
2 import  tensorflow_datasets  as  tfds  
3 import  pandas  as  pd  
4 from  math  import  sqrt  
5 from  sklearn  .  metrics  import  accuracy_score  
6 

7 ds  =  tfds  .  load  (’  titanic  ’,  split  =’train  ’,  shuffle_files  =  True  )  
8 titanic_df  =  tfds  .  as_dataframe  (ds)  
9 

10 titanic_df  .  drop  ("  name  ",  axis  =1  ,  inplace  =  True  )  
11 columns  =  [’  survived  ’,’age  ’,’fare  ’]
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Fig. 4.3 kNN Titanic prediction results 

12 features  =  columns  [1:]  
13 titanic_df  =  titanic_df  [  columns  ].  replace  ([  np.inf  ,  −np.  inf  ],  np.  nan  ).  dropna  

()  
14 

15 titanic_df  =  titanic_df  [  titanic_df  [  ’fare  ’]  >  30]  
16 

17 survivded_df  =  titanic_df  [  titanic_df  [  ’  survived  ’  ]==1].  sample  (50  ,  
random_state  =12345)  

18 not_survivded_df  =  titanic_df  [  titanic_df  [’  survived  ’  ]==0].  sample  (50  ,  
random_state  =12345)  

19 

20 train_set  =  survivded_df  .  sample  (40  ,  random_state  =12345)  
21 train_set  =  pd.  concat  ([  train_set  ,  not_survivded_df  .  sample  (40  ,  random_state  

=12345)  ])  
22 train_set_labels  =  train_set  [’  survived  ’] 
23 train_set  =  train_set  [  features  ]  
24 

25 test_set  =  survivded_df  .  sample  (10  ,  random_state  =12345)  
26 test_set  =  pd.  concat  ([  test_set  ,  not_survivded_df  .  sample  (10  ,  random_state  

=12345)  ])  
27 test_set_labels  =  test_set  [’  survived  ’] 
28 test_set  =  test_set  [  features  ]  

Listing 4.4 kNN data set and parameters setup 

The next lines are the data cleanup operations that get three columns (age, fare, 
survived) and limit the number of examples. We use again a small number of examples 
to train the model faster, but also in this case plot the examples in such a way that 
these are easier to read. The surviving column is our binary label and the two other 
columns are our features. These two features might now be obvious to have an impact 
on the prediction as gender has. The results are shown in Fig. 4.3. In the first one 
the training set is shown with two labels: survived (green), drown (red). In Fig. 4.3b 
the testing set objects are plotted. The orange dots are the objects that are properly 
classified as drowned, the blue ones are properly classified as survived. On the other 
hand, the black and purple ones are misclassified as not drowning and as survived.
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4.3 Linear Regression 

Regression is about predicting the future values of a feature that depends on a second 
feature. The first feature is called an explanatory variable, and the second that depends 
on it is called a response variable. To simplify, let . x be an explanatory variable and 
. ŷ a response variable. It can be calculated as follows: 

.ŷ = axi + b, (4.9) 

where 

.a =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

(4.10) 

and 
.b = y − ax . (4.11) 

The variable . a is known as a slope and is calculated using the ordinary least squares 
method, which is similar to the correlation that we have already presented. The 
variable . b is known as a random variable that adds noise. We can extend the linear 
regression equation to more than one variable. xi , but to make it simple, we stay with 
only one here. Keep in mind that we should consider. ŷ as one of our features from the 
vector of features. The same as. y which corresponds to.xi2 in our previous example. 
It is just the nomenclature. Based on Eq. 4.9 we see that the predicted value depends 
on the mean. In 1973 Anscombe [ 2] found that we can have multiple data sets that 
can give the same results of linear regression. Let us take a look at the data sets shown 
in Table 4.1. The means for both features are the same and are, respectively, . x = 9
and.y = 7.5. The regression equation will look for each data set the same and looks 
as follows: 

. ŷ = 3 + 1

2
xi .

The data sets are plotted in Fig. 4.4. 

Example 3 (Learning II) Let us take the same data set as in the Example in the 
Statistics section in Chap. 2 (Table 4.2). We can calculate the number of hours 
needed to collect 100 points on the final exam. First, calculate the variables . a and. b. 
The averages are .x = 68.5 and .y = 32. We can easily calculate . a and . b: 

. a = 1504

2265.5
≈ 0.6638,

. b = 32 − 0.6638 · 68.5 ≈ −13.4703.

It brings us to a general equation for this problem that looks as follows: 

.ŷ = 0.6638xi − 13.4703.
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Table 4.1 Anscombe’s data sets 

I II III IV 

.x1 .y1 .x2 .y2 .x3 .y3 .x4 . y4

10.00 8.04 10.00 9.14 10.00 7.46 8.00 6.58 

8.00 6.95 8.00 8.14 8.00 6.77 8.00 5.76 

13.00 7.58 13.00 8.74 13.00 12.74 8.00 7.71 

9.00 8.81 9.00 8.77 9.00 7.11 8.00 8.84 

11.00 8.33 11.00 9.26 11.00 7.81 8.00 8.47 

14.00 9.96 14.00 8.10 14.00 8.84 8.00 7.04 

6.00 7.24 6.00 6.13 6.00 6.08 8.00 5.25 

4.00 4.26 4.00 3.10 4.00 5.39 19.00 12.50 

12.00 10.84 12.00 9.13 12.00 8.15 8.00 5.56 

7.00 4.82 7.00 7.26 7.00 6.42 8.00 7.91 

5.00 5.68 5.00 4.74 5.00 5.73 8.00 6.89 

Fig. 4.4 Linear regression charts for Anscombe’s data sets
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Table 4.2 Correlation between hours spent on learning and exam grade exemplary data 

Average 
hours spent 
on learning 

10 22 30 38 44 48 

Average 
points 
collected 

40 52 61 75 88 95 

Fig. 4.5 Linear regression calculation step by step 

Now we can calculate how many hours we theoretically need to learn to collect 100 
points: 

. ŷ100 = 0.6638 · 100 − 13.4703 = 52.9.

Linear regression works with more than two features (Fig. 4.5), which means that it 
generates hyperplanes like shown in Fig. 4.6 in a three-dimensional features space. 
The weights can be implemented using the numpy methods as in Listing 4.6. 

1 w  =  np.  dot  (np.  linalg  .  inv  (np.  dot  (np.  transpose  (x),x)),np.  dot  (np.  transpose  (x)  
,y))  

Listing 4.5 Linear regression weights calculation
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Fig. 4.6 Linear regression 
hyperplane in a 
three-dimensional features 
space 

The . y value can be next calculated as given in Eq. 4.9 

1 def  reg_predict  (  inputs  ,  w,  b):  
2 results  =  []  
3 for  inp  in  inputs  :  
4 results  .  append  (  inp  ∗w+b)  
5 return  results  

Listing 4.6 Linear regression weights calculation 

Lasso regression 

A complex model can end with overfitting. It highly depends on variance and bias 
(see Fig. 4.7). The variance is related to the differentiation of the training data. The 
more features and data we have there higher variance we get. The bias is about 
simplification of the model by having a focus on just a part of the features when 
the bias is high. It is very hard to have a low variance and low bias model, but we 
should keep trying to get as close as possible. In Fig. 4.8 we show the differences in 
each combination of low/high variance and bias. There are some methods that can 
reduce the model complexity by reducing the variance and bias. In linear regression, 
we have a few modifications that 

• Lasso regression, 
• Ridge regression, 
• Elastic Net regression. 

Lasso stands for least absolute shrinkage and selection operator. It uses the L1 reg-
ularizer. We take magnitudes into account:
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Fig. 4.7 Model complexity versus classification error rate, depending on the bias and variance 

Fig. 4.8 Bias versus 
variance trade-off
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.

M∑

i=1

⎛

⎝yi −
p∑

j=0

w j ẋi j

⎞

⎠
2

+ λ

p∑

j=0

|w j |. (4.12) 

For .λ = 0, the formula is linear regression. This regularization can make some of 
the features not be taken into account in the final output. This means that we can use 
Lasso to select the features. The value . λ: 

• higher value means less features, 
• lower values mean more features selected. 

The way of calculating the linear regression as shown in the previous section is simple 
but in many cases is not efficient. A different way and one of the most popular 
methods to find the proper weights are the mean squared error and the stochastic 
gradient descent, where the first is formulated as 

.MSE = 1

n

n∑

i=1

(y − ŷ)2. (4.13) 

MSE or a modification of it can be used to implement stochastic gradient descent 
(SGD). A cost function in linear regression is defined as follows: 

.

M∑

i=1

⎛

⎝yi −
p∑

j=0

w j ẋi j

⎞

⎠
2

. (4.14) 

This function should be minimized using the MSE and SGD methods. 

Example 4 (Height found with Lasso regression with SGD) To show how  the SGD  
works, we use one of the BMI examples of people’s weights and heights shown in 
Table 4.3. The lasso regression needs the alpha variable to calculate the slope. The 
SGD function takes the initial coefficient matrix, the data set, labels, the number of 
epochs, the learning rate, and the L1 alpha (Listing 4.7). 

1 x  =  np.  asmatrix  (np.c_[np.  ones  ((  len  (x)  ,1)),x])  
2 

3 I  =  np.  identity  (2)  
4 alpha  =  0.1  
5 

6 init_c  =  np.  zeros  ((2  ,1)  )  
7 results  =  []  
8 

9 w2  =  sgd  (  init_c  ,  x,  y,  10  ,  0.1  ,  alpha  )  
10 w2  =  w2.  ravel  ()  
11 results  .  append  (w2)  
12 

13 w1  =  np.  linalg  .  inv  (x.T  ∗ x  +  alpha  ∗ I)  ∗ x.T  ∗ y 
14 w1  =  w1.  ravel  ()  
15 w1  =  np.  squeeze  (np.  asarray  (w1))  
16 results  .  append  (w1)  

Listing 4.7 Linear regression weights calculation using SGD
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Table 4.3 BMI data set example 

Height 188 181 197 168 167 187 178 194 140 176 168 192 173 142 176 

Weight 141 106 149 59 79 136 65 136 52 87 115 140 82 69 121 

The method calculates the weights and bias using Eq. 4.14. 

1 def  sgd  (  coeffs  ,  x,  y,  epochs  ,  rate  =  0.1  ,  l1  =  0.1)  :  
2 norm  =  np.  linalg  .  norm  (x,  axis  =  0)  
3 w  =  coeffs  [0]  
4 b  =  coeffs  [1  
5 m  =  y.  shape  [0]  
6 n  =  x.  shape  [1]  
7 for  i in  range  (  epochs  ):  
8 x_in  =  x  [:  ,1].  reshape(−1, 1) 
9 y_pred  =  x_in  ∗ w + b  

10 if w >  0:  
11 dW =  (− (2 ∗ x_in  .T.  dot  (y  − y_pred  ))  +  l1  )  /  norm  [1]  ∗∗ 2 
12 else  : 
13 dW =  (− (2 ∗ x_in  .T.  dot  (y  − y_pred  ))  − l1  )  /  norm  [1]  ∗∗ 2 
14 db =  − 2 ∗ np. sum  (y  − y_pred  )  //  norm  [0]  ∗∗ 2 
15 w = w  − rate  ∗ dW 
16 b = b  − rate  ∗ db 
17 coeffs  [0]  =  b  
18 coeffs  [1]  =  w  
19 return  coeffs  

Listing 4.8 SGD implementation for linear regression 

The plot looks similar to the example without using the SGD, because of the small 
data set. The weights are 49.8 and 0.30, and bias .−101.72 and 1.17. 

Ridge regression 

Ridge regression is about to shrink the coefficients. The equation of the ridge regres-
sion can be written as 

.

M∑

i=1

⎛

⎝yi −
p∑

j=0

w j ẋi j

⎞

⎠
2

+ λ

p∑

j=0

w2
j . (4.15) 

The . λ adds a penalty to the coefficients . w. It avoids having too high values of the 
coefficients and adds the penalty whenever the values are too big. The value . λ: 

• higher value means more penalty when the coefficients are bigger, 
• lower values make it more like regular linear regression, 
• higher values make the variance decrease, and the bias increase. 

Elastic Net implements both L1 and L2 regularizators. The cost function is defined 
as follows:
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.

∑M
i=1(yi − ∑p

j=0 w j ẋi j )2

2n
+ λ

⎛

⎝1 − α

2

m∑

j=1

w2
j + α

m∑

j=1

|w j |
⎞

⎠ . (4.16) 

The parameter. α is between 0 and 1, where closer to 1 returns the result that is closer 
to the one given by the ridge regression, 0 for Lasso. It is not easy to find the best 
value of. λ, but we can use the cross-validation method to test at least a few values of 
. λ and compare the results. 

4.4 Logistic Regression 

A different type of regression is logistic regression. Logistic regression [ 3] is based 
on the logistic function. It is shown in Fig. 4.9. It is very useful especially when we do 
calculations based on probability theory, because the logistic function gives values 
from 0 to 1, so it easily corresponds to probability. It can be calculated as follows: 

.ŷlog = ea+bxi

1 + ea+bxi
= 1

1 + e−(a+bxi )
. (4.17) 

Logistic regression as well as linear can be found in featured books or articles as . Y . 
The parameters are also marked as . α and . βi . To avoid misunderstandings, we keep 
a common nomenclature. As in linear regression, we need to find the parameters for 
each problem separately. In logistic regression, it is a vector of parameters that is 
called weights: 

.w = [b, a]. (4.18) 

The term weights is very often used in machine learning and we will describe it sep-
arately for each method. In logistic regression, the goal is to find the two parameters 
that give the best representation of the data of a given problem. It would be best 

Fig. 4.9 Logistic function
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if we could find such parameters that for each .xi set in Eq. 4.17 we get the proper 
. yi . It can be done using one of the most known methods of a maximum likelihood 
estimator, the Newton-Raphson method. It is an iterative method and requires more 
calculations compared to linear regression. Weights are calculated in each iteration 
as follows: 

.wk+1 = wk + (XT V X)−1XT (y − p̂i ), (4.19) 

where . k is the iteration number and.V is a diagonal weight matrix. Diagonal weight 
matrix elements can be calculated as follows: 

.vi i = ŷlogi (1 − ŷlogi ). (4.20) 

The loop can end for two reasons. We can set a fixed number of iterations or we 
can set a weight difference value between two iterations and end the loop when the 
change in each iteration is below that value. Usually, it is set to .0.01 or lower. 

Example 5 (Skin lesion) We have six patients with a skin lesion. Three lesions are 
known to be not cancers and the other three are known to be cancer. 

. y = [
0 1 0 0 1 1

]

We have two features that indicate if it’s cancer or not, so we need to estimate the 
value of three parameters, and the weights vector looks at the start like: 

. w = [
0 0 0

]
.

Let us construct our feature vector. The first feature is the asymmetry of the lesion. It 
is a value from a range of 0 to 2 where 2 means total asymmetry and 0 total symmetry. 
The second is the number of colors that are within the lesion. It is a value from the 
range 0 to 6. As shown in Eq. 4.17, we need to multiply the weights vector with the 
features vector matrix. This means that it needs to have three rows instead of two. 
We need to add one column at the beginning filled with 1. Let the.X look as follows: 

.X =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 2 5
1 1 2
1 1 3
1 0 4
1 2 3

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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We need to calculate .wT xi in the first place: 

. wT x1 =
⎡

⎣
0
0
0

⎤

⎦ · [
1 1 0.5

] = 0.

The next step is to calculate the diagonal elements of matrix. V . Before that we need 
to calculate the logistic regression value for each . xi : 

. ylog1 = e0

1 + e0
= 1

2
.

The.ylogi values are the same for each.xi in the first iteration. The same with diagonal 
elements: 

. v11 = 1

2
∗ 1

2
= 1

4
.

The weight matrix looks now as follows: 

. V0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.25 0 0 0 0 0
0 0.25 0 0 0 0
0 0 0.25 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0.25 0
0 0 0 0 0 0.25

⎤

⎥⎥⎥⎥⎥⎥⎦
.

In the last step, we need to calculate new weight values. It is a bigger computation 
of multiplied matrices and vectors, so we divide it into a few parts to keep it clear 
and understandable. In the first place let’s calculate .XT V0: 

.

XT V0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 2 5
1 1 2
1 1 3
1 0 4
1 2 3

⎤

⎥⎥⎥⎥⎥⎥⎦

T

·

⎡

⎢⎢⎢⎢⎢⎢⎣

0.25 0 0 0 0 0
0 0.25 0 0 0 0
0 0 0.25 0 0 0
0 0 0 0.25 0 0
0 0 0 0 0.25 0
0 0 0 0 0 0.25

⎤

⎥⎥⎥⎥⎥⎥⎦

=
⎡

⎣
0.25 0.25 0.25 0.25 0.25 0.25
0 0.5 0.25 0.25 0 0.5
0 1.25 0.5 0.75 1 0.75

⎤

⎦ .
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Next we multiply the results with matrix .X and inverse the result: 

. 

(XT V X)−1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

⎡

⎣
0.25 0.25 0.25 0.25 0.25 0.25
0 0.5 0.25 0.25 0 0.5
0 1.25 0.5 0.75 1 0.75

⎤

⎦ ·

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 2 5
1 1 2
1 1 3
1 0 4
1 2 3

⎤

⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎠

−1

=
⎡

⎣
2.91 −0.32 −0.68

−0.32 1.37 −0.37
−0.68 −0.37 0.37

⎤

⎦

Once we are done with it we need to calculate the output vector and current.p0 which 

is the vector that consists of .p0(i) = ewT xi

1+ewT xi
. i elements for each . xi : 

. 
y − p = [

0 1 0 0 1 1
] − [

0.5 0.5 0.5 0.5 0.5 0.5
]

= [−0.5 0.5 −0.5 −0.5 0.5 0.5
]

The next step is to multiply inverted matrix .(XT V X)−1 with .XT : 

. 

(XT V X)−1XT =
⎡

⎣
2.91 −0.32 −0.68

−0.32 1.37 −0.37
−0.68 −0.37 0.37

⎤

⎦ ·

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 2 5
1 1 2
1 1 3
1 0 4
1 2 3

⎤

⎥⎥⎥⎥⎥⎥⎦

T

=
⎡

⎣
2.91 −1.12 1.23 0.55 0.2 0.23

−0.32 0.57 0.31 −0.06 −1.8 1.31
−0.68 0.43 −0.31 0.06 0.8 −0.31

⎤

⎦

The last step in an iteration is to multiply two matrices that we have just calculated 
together: 

. 

(XT V X)−1XT (y − p) =
⎡

⎣
2.91 −1.12 1.23 0.55 0.2 0.23

−0.32 0.57 0.31 −0.06 −1.8 1.31
−0.68 0.43 −0.31 0.06 0.8 −0.31

⎤

⎦

· [−0.5 0.5 −0.5 −0.5 0.5 0.5
]

= [−2.69 0.077 0.92
]
.

As the previous weights vector was filled with zeros, the current weight vector is 

.w = [−2.69 0.077 0.92307692
]
.
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Table 4.4 Results after three iteration of Example 5 

.xi .−(α + β1xi + β2x2) .ylog(xi ) . yi

.(0, 0) .10.02 .0.00004 . 0

.(2, 5) .−(−10.02 + 2.46 + 14.35) = 6.78 .0.99 . 1

.(1, 2) .−(−10.02 + 1.23 + 5.74) = −3.05 .0.045 . 0

.(1, 3) .−(−10.02 + 1.23 + 8.61) = −3.23 .0.038 . 0

.(0, 4) .−(−10.02 + 11.48) = 1.46 .0.811 . 1

.(2, 3) .−(10.02 + 2.46 + 8.61) = 2.51 .0.924 . 1

Fig. 4.10 Logistic 
regression of skin lesion 
diagnosis example 

After three iterations we get the following weight vector: 

. w = [−10.02052458 1.22700068 2.86618458
]
.

We could also do some more iterations. Now check the logistic regression value 
for each . xi . It is shown in Table 4.4. The results presented indicate that logistic 
regression can be useful in some cases. Each .xi that is cancer has a high value of 
logistic regression, close to 1. The logistic regression value of benign lesions is close 
to 0. We can draw it as presented in Fig. 4.10. 

The code of a simple logistic regression implementation should not take more 
than 40 lines of code. An example is presented in Listing 4.9. 

1 import  numpy  as  np  
2 from  math  import  exp  
3 from  numpy  .  linalg  import  inv  
4 

5 class  LogisticRegression  :  
6 

7 def  __init__  (  self  ):  
8 self  .  weight  =  np.  array  ([0  ,0  ,0])  
9 

10 def  set_y_vector  (self ,y): 
11 self  .y=np.  array  (y)  
12 

13 def  set_x_vector  (self ,x):
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14 self  .x=x  
15 

16 def  set_iterations  (self ,k):  
17 self  .k=k  
18 

19 def  calculate_weight_matrix_v  (  self  ):  
20 p_vector  =[]  
21 v_diag  =[]  
22 for  j in  xrange  ( len  (  self  .x)):  
23 w_t_x_i  =  exp  (np.  dot  (  self  .x[j],  self  .  weight  ))  
24 p_vector  .  append  ((  w_t_x_i  /(1+  w_t_x_i  )))  
25 v_diag  .  append  ((  w_t_x_i  /(1+  w_t_x_i  ))∗(1−(  w_t_x_i  /(1+  w_t_x_i  ))))  
26 logging  .  info  (  v_diag  )  
27 v_matrix  =  np.  diag  (  v_diag  )  
28 return  [  v_matrix  ,  p_vector  ]  
29 

30 def  calculate_parameters  (  self  ):  
31 for  i in  xrange  (  self  .k):  
32 [  v_matrix  ,  p_vector  ]  =  self  .  calculate_weight_matrix_v  ()  
33 print  "  det  :  "  + str  (np.  linalg  .  det  (np.  dot  (np.  dot  (  self  .x.  

transpose  ()  ,  v_matrix  ),self  .x)))  
34 inv_x_t_v_x  =  inv  (np.  dot  (np.  dot  (  self  .x.  transpose  ()  ,  v_matrix  ),  

self  .x))  
35 y_p_substracted  =np.  subtract  (  self  .y,np.  array  (  p_vector  ))  
36 inv_x_t_v_x_t  =np.  dot  (  inv_x_t_v_x  ,  self  .x.  transpose  ())  
37 result  =np.  dot  (  inv_x_t_v_x_t  ,  y_p_substracted  )  
38 self  .  weight  =np.  squeeze  (np.  asarray  (np.  add  (  self  .  weight  ,  result  )))  

Listing 4.9 Logistic regression code sample 

We need to use three external libraries: numpy to multiply, add, and subtract two 
matrices, exp to calculate .ewT xi and .inv to inverse the matrix. In the constructor, 
we set the initial default weight vector values. The next two methods are just simple 
setters of the. X matrix and the. y vector. Method set_iterations is about setting 
the number of iterations as we stop after the number is reached. The last method called 
calculate_parameters is the core part that calculates the new weights. It uses 
the method calculate_weight_matrix_v that calculates the new .Vi matrix 
in each iteration. 

4.5 Naive Bayes Classifier 

Bayesian classifiers are a set of methods that uses Bayes’ theorem or alternatively, 
Bayes’ rule to choose the most matching class, based on some prior knowledge. 
Typically, we have a training data set that contains vectors with the appropriate 
class assigned to each of them. Such vectors may describe each case with multiple 
features, both numeric and categorical. The simplest case is a binary classification 
based on one-feature-long vectors. Having a training data set given, we would like 
to ask what the most likely class is for a new object. This time we will not assume 
single feature vectors or binary classification, but rather describe a general class of 
problems, which usually affects many different features and classes. In most cases, 
we do not have posterior probabilities given directly and there is no easy way to 
calculate such probabilities, having only the data set. For that reason, we will use 
Bayes’ theorem.
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We already explained a few probability terms in Chap. 2. Some more that still 
need more explanation before we define the Bayesian rule is the prior probability. 
.P(Ai ) is called prior probability and is a probability of belonging to the .i-th class 
and can be simply estimated by counting the number of vectors having this class 
in our training data set and normalizing it by a total number of vectors. .P(B|Ai ) is 
called likelihood and is a conditional probability of observing the vector. x given that 
it belongs to the .i-th class. These values are usually estimated as a product of the 
probabilities for each feature (.Ai ) separately. 

Once again, there is a need to estimate these feature-level likelihoods using a 
training data set. This time, we will get a number of vectors that have a particular 
value of the feature and belong to the .i-th class. Then it will be divided by the total 
number of vectors that have this value for this particular feature, regardless of which 
class it belongs to. 

The last remaining value is .P(B), which is the probability that the object will 
appear at all. To calculate this value, we would have to know the data distribution; 
however, we may neglect it. It can be done, because this value will be the same for 
all the probabilities, and we are looking for the class which maximizes the posterior 
probability. If the denominator is common for all, then taking the maximum of the 
nominator is enough. Finally, we can draw the Bayesian rule as follows: 

. P(Ak |B) = P(B|Ak) · P(Ak

P(B|A1) · P(A1) + P(B|A2) · P(A2) + · · · + P(B|An) · P(An)
.

(4.21) 
The implementation of the Naive Bayes classifier is divided into three functions: 
gaussian_pdf, calculate_probability, and the main function that uses 
the second function to calculate the probability: naive_bayes_classifier. 

1 def  gaussian_pdf  (x,  mean ,  stdev  ):  
2 exponent  =  exp(−((x−mean  )∗∗2 /  (2  ∗ stdev ∗∗2)  ))  
3 return  (1  /  (  sqrt  (2  ∗ pi) ∗ stdev  ))  ∗ exponent  
4 

5 

6 def  calculate_probability  (x,  class_probability  ,  mean ,  stdev  ):  
7 probability  =  class_probability  
8 i = 0  
9 for  feature  in  features  :  

10 probability  ∗=  gaussian_pdf  (x[i],  mean  [  feature  ],  stdev  [  feature  ])  
11 i = i + 1  
12 return  probability  

Listing 4.10 Naive Bayes Gaussian probability distribution 

In Listing 4.10 a short Gaussian probability density function is implemented. Assum-
ing we have the Gaussian distribution in the data set. The PDF is used to calculate 
the probabilities for a new object. 

1 def  naive_bayes_classifier  (x):  
2 probabilities  =  []  
3 

4 label  =  0  
5 class_probability  =  train_size  /  (  train_size  ∗ label_count  )  
6 

7 label_zero_probability  =  calculate_probability  (x  ,  class_probability  ,  
mean_zero  ,  std_zero  )
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8 probabilities  .  append  (  label_zero_probability  )  
9 

10 label_one_probability  =  calculate_probability  (x  ,  class_probability  ,  
mean_one  ,  std_one  )  

11 if label_one_probability  >  label_zero_probability  :  
12 label  =  1  
13 probabilities  .  append  (  label_one_probability  )  
14 

15 label_two_probability  =  calculate_probability  (x  ,  class_probability  ,  
mean_two  ,  std_two  )  

16 probabilities  .  append  (  label_two_probability  )  
17 if label_two_probability  >  label_one_probability  :  
18 label  =  2  
19 

20 

21 return  label ,  probabilities  

Listing 4.11 Naive Bayes classification method 

In Listing 4.11 the probabilities for two labels are calculated as the case considered 
to be solved is a binary classification problem. 

1 results_prob  =  []  
2 prediction  =  []  
3 for  x in test_set  :  
4 pred ,  probabilities  =  naive_bayes_classifier  (x)  
5 results_prob  .  append  (  probabilities  )  
6 prediction  .  append  (  pred  )  
7 

8 accuracy  =  calculate_accuracy  (  prediction  ,  test_labels  )  

Listing 4.12 Naive Bayes classifier execution method 

The implementation in Listing 4.12 the implementation of the classifier is given and 
the accuracy is calculated. 

Example 6 (Covid-19 probability) Let. B be a person with a positive COVID-19 test, 
.A1 be drawn by a random ill person, and.A2 be a healthy person. Let us assume that 
.P(A1) = 0.05, .P(A2) = 0.95, .P(B|A1 = 0.92, .P(B|A2) = 0.10. This means that 
the test is positive for 92% of ill persons and 10% for healthy persons It is important 
to get the probability of .A1|B and it can be calculated as follows: 

. P(A1|B) = P(B|A1) · P(A1

P(B|A1) · P(A1) + P(B|A2) · P(A2)

= 0.92 · 0.05
0.92 · 0.05 + 0.10 · 0.95 ≈ 0.3194.

This means that about 31.9% of patients with a positive test are actually ill. 

Example 7 (Iris classified using Naive Bayes method) The Iris data set consists of 
three classes. To simplify the usage of the Naive Bayes method, we use only two. 
The data preparation is given in Listing 4.13. 

1 from  sklearn  .  model_selection  import  train_test_split  
2 

3 iris  =  load_iris  ()  
4 data_set  =  iris  .  data  
5 labels  =  iris  .  target  
6 data_set  =  data_set  [:  ,:2]
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7 

8 data_set  =  data_set  [  labels  !=2]  
9 labels  =  labels  [  labels  !=2]  

10 

11 train_data_set  ,  test_data_set  ,  train_labels  ,  test_labels  =  
train_test_split  (  

12 data_set  ,  labels  ,  test_size  =0.2 ,  random_state  =15)  
13 

14 train_labels  [  train_labels  <1]  =  −1 
15 test_labels  [  test_labels  <1]  =  −1 
16 

17 train_size  =  len  (  train_labels  )  
18 test_size  =  len  (  test_labels  )  
19 label_count  =  2  
20 feature_count  =  2  
21 

22 mean_label0  =  np.  mean  (  train_data_set  [[  np.  where  (  train_labels  ==−1)]][0]  ,  axis  
=1)  

23 mean_label1  =  np.  mean  (  train_data_set  [[  np.  where  (  train_labels  ==1)  ]][0]  ,  axis  
=1)  

24 

25 std0  =  np.  std  (  train_data_set  [[  np.  where  (  train_labels  ==−1)]][0]  ,  axis  =1)  
26 std1  =  np.  std  (  train_data_set  [[  np.  where  (  train_labels  ==1)  ]][0]  ,  axis  =1)  

Listing 4.13 Naive Bayes classifier execution method 

The functions are next limited to two classes in the naive_bayes_classifier 
function. We changed the classes to 1 and.−1 to simplify the classification. The other 
functions are changed slightly to get the means from a list, not from a DataFrame 
like in the previous Listing of this function. 

1 from  math  import  exp  
2 from  math  import  pi  
3 

4 def  naive_bayes_classifier  (x):  
5 probabilities  =  []  
6 

7 label  =  −1 
8 class_probability  =  train_size  /  (  train_size  ∗ label_count  )  
9 

10 label_zero_probability  =  calculate_probability  (x,  class_probability  ,  
mean_label0  ,  std0  )  

11 probabilities  .  append  (  label_zero_probability  )  
12 

13 label_one_probability  =  calculate_probability  (x  ,  class_probability  ,  
mean_label1  ,  std1  )  

14 if label_one_probability  >  label_zero_probability  :  
15 label  =  1  
16 probabilities  .  append  (  label_one_probability  )  
17 

18 return  label ,  probabilities  
19 

20 

21 def  gaussian_pdf  (x,  mean ,  stdev  ):  
22 exponent  =  exp(−((x−mean  )∗∗2 /  (2  ∗ stdev ∗∗2)  ))  
23 return  (1  /  (  sqrt  (2  ∗ pi) ∗ stdev  ))  ∗ exponent  
24 

25 

26 def  calculate_probability  (x,  class_probability  ,  mean ,  stdev  ):  
27 probability  =  class_probability  
28 i = 0  
29 for  feature  in  range  (  feature_count  ):  
30 probability  ∗=  gaussian_pdf  (x[i],  mean  [0][  feature  ],  stdev  [0][  

feature  ])  
31 i = i + 1  
32 return  probability  

Listing 4.14 Naive Bayes classifier execution method
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It is interesting that for many sets of randomly chosen tests and trains, this method 
achieves an accuracy of 100%. 
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Chapter 5 
Decision Trees 

Decision trees are one of the most popular machine learning methods. One of the 
reasons is their easy usage and understanding. A decision tree is a method that can be 
easily visualized and understood. We have tens of different decision trees [ 1– 17]. A 
decision tree is a method that divide the feature space on each level of a tree. It means 
it is a non-linear method because it does a linear classification at each node. The tree 
starts with a root and consists of decision nodes and leafs. It decouples the training 
set into smaller sets based on some conditions related to one (univariate) or more 
features (multivariate). As a result of the division, we can get one or more smaller 
data sets of different sizes. The goal of a decision tree is to build a tree in a way that 
we have objects of the same label in each leaf. A tree can be also written as a set of 
rules as it is based on a set of choices at each node. That is why it is commonly used 
in many decision-making software. It handles multiclass problems easily. We can use 
decision trees to understand which feature has the major impact on the classification. 
The more often a feature is used in decision nodes the higher impact it has on the 
classification. Compared to some other methods, decision trees do not work like a 
black box as hidden layers of a neural network. Another advantage of decision trees 
is their performance. Compared to most methods it is fast. On the other hand, a small 
change in training data can significantly change the rules and accuracy. Decision 
trees can also easily overfit. Usually, there is more than one tree that works well for 
a given data set. A more complex solution based on decision trees is called random 
forest. It is described in Chap. 7. Random forest is a combination of many decision 
trees. It usually gives much better results compared to decision trees. The random 
forest method is commonly used for many classification problems as it gives often 
better accuracy compared to regular neural networks or SVM. In this chapter, we 
explain how decision tree methods work. We divided this chapter into four parts. In 
the first part, we explain different types of trees and what the classification process 
looks like. To simplify we used binary trees. The second part is focused on univariate 
tree construction methods. It is an easier type of decision trees. We explain the most 
common methods like CART and C4.5. The third part is dedicated to multivariate 
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methods where the OC1 method is described in detail. The fourth part is about the 
quality metrics in decision trees. A major part of this section is dedicated to tree 
pruning methods. 

5.1 Introduction to Tree-Based Classification 

Decision trees are most likely binary trees. There are some exceptions, like the 
CHAID or C4.5 methods, but most methods stick to binary rules. Binary trees are 
trees in which each leaf/node has a maximum of two children. It is a structure where 
each child has its own child, etc. To better explain it, we prepared an abstract data 
set that is presented in Table 5.1. In the set, we have two features, as it is easier to 
understand when drawn on a two-dimensional space. The data set is divided into two 
classes .−1, 1. 

We can easily plot this data set as shown in Fig. 5.1. It is not a linear classification 
problem. We could try to use one of the previously explained methods, such as KNN. 
A univariate decision tree uses multiple linear decisions to divide the data set into 
sections of objects with the same label. At first glance, we might discover four such 
sections of objects: two red ones in the middle, one blue on the bottom, and one blue 
on the top. 

The tree, when trained, makes a decision on one feature, which means that the line 
is perpendicular to the axis. For example, for.x1 = 4, the line would be parallel to the 
axis .x2 with a value of .x1 = 4. This would divide the data set into two smaller ones, 
one on the left where .x1 < 4 and the other on the right where .x1 ≥ 4. We can now 
take both parts of the main data set and divide them again and again until we reach 
sets where we have all objects of the same label. The training part of a decision tree 
is to find out the division rules. An example of such a tree that divides the data set 
Table 5.1 is shown in Fig. 5.2. The tree has only four decisions, and the features are 

Table 5.1 Decision tree example data 

.xi1 .xi2 Label .xi1 .xi2 Label 

.x1 0.5 0.5 .−1 .x11 1 7 1 

.x2 1.5 2 .−1 .x12 2 8 1 

.x3 2 4.5 .−1 .x13 1.5 9 1 

.x4 1 3.5 .−1 .x14 4 2 1 

.x5 2.5 4 .−1 .x15 6 3 1 

.x6 3.5 5.5 .−1 .x16 7 4 1 

.x7 6 6 .−1 .x17 9 2.5 1 

.x8 8 5.5 .−1 .x18 5 9 1 

.x9 9 6.5 .−1 .x19 7 8.5 1 

.x10 7.5 6 .−1 .x20 9 8 1
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Fig. 5.1 Two-dimensional feature space with objects from the data set given in Table 5.1 

Fig. 5.2 Decision tree constructed for data shown in Table 5.1 

used equally. This tree can be replaced with a nested set of rules. The rules in each 
node can be drawn as in Fig. 5.3. We see that the rules divided the feature space into 
five areas. What is important here is that all areas consist of an object of the same 
label. In the tree, we have marked sets that are made based on previous decisions 
with two colors: blue for the positive class and red for the negative class sets. 

1 class  BinaryLeaf  :  
2 

3 def  __init__  (self ,  elements  ,  labels  ,  ids  ):  
4 self  .L  =  None  
5 self  .R  =  None  
6 self  .  elements  =  elements  
7 self  .  labels  =  labels  
8 self  .  ids  =  ids  
9 self  .  completed  =  False  

Listing 5.1 Tree leaf in Python
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Fig. 5.3 Decision tree in 
two-dimensional feature 
space 

The tree node consists of the left and right child node, objects (elements) that the 
current node consists. The labels property is a list of labels where each value is 
reflected to each object at this node. The last property is a Boolean field that gives us 
a better understanding of how this node should be divided. A node is completed if 
unique values of label list if equal to 1. The second reason is that objects cannot 
be divided anymore. In such cases, we return the prediction as the majority labels 
in this node, or if we have the same number of labels for each class, we return the 
prediction randomly. 

5.2 Tree Operations 

We have four major tree operations: growth, division, prune, and merge (aggregation). 
The tree growing  as  shown in Fig.  5.4a, b is an obvious operation. It is done during 
the training phase of a decision tree method. The goal is also to build a more accurate 
decision tree by adding new decision nodes. A similar operation is a split of data 
within a node into two leafs. Compared to tree growth operation, division is related 
to just one node split where grow is about a node grow, multiple splits. Pruning trees 
is a very important part of each decision tree method. The decision tree can easily 
overfit. It happens often when the tree is too complex. It will divide the feature space 
into too many small pieces and does not generalize the problem well. This can be 
fixed with tree pruning by reducing unnecessary nodes and leaves. There are different 
types of tree pruning. We dedicated a separate section for tree pruning methods as 
it is very important to know how to avoid overfitting in decision trees. The last tree 
operation that we would like to explain is tree aggregation. It also reduces the number 
of leafs as is done in pruning methods. The difference is that in pruning we deleted 
the leafs of a node, where aggregation means merging of two nodes on the same 
level.
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Fig. 5.4 Tree operations: growth, division, pruning, and aggregation 

Fun fact: Decision trees are like overzealous know-it-alls—they eagerly 
make decisions based on what they’ve observed, but sometimes they come 
up with hilariously specific rules. For example, a poorly tuned decision tree 
might declare with absolute certainty, “If it’s cloudy, you own three cats, and 
your neighbor plays jazz, then you should definitely buy a sports car!” [ 18]
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5.3 Impurity Measures 

Impurity measures are used to check how homogeneous or heterogeneous a given 
data set is. If a data set has many classes it means that it is heterogeneous (impure). 
The opposite is homogeneous, which means that the data set is pure. The impurity 
measures are used to split a data set into two child nodes in a decision tree. There 
are many impurity measures: 

• Gini index, 
• Entropy (information gain), 
• Classification error, 
• Likelihood-ratio method, 
• DKM impurity method, 
• Orthogonal criterion. 

We describe only two methods as only these two are used by the methods we explain 
in this chapter. More sophisticated impurity methods exist. Likelihood-ratio method 
is based on Chi-Squared statistics and information gain [ 19]. A method that gives 
good results in small trees is the DKM impurity method [ 20]. There is a method 
based on the area under the curve (AUC) [ 21]. We have described AUC in Sect. 
1.6. Distance measure can be used as a stop criterion [ 22]. A similar to gain ratio 
method was introduced in [ 23]. Orthogonal criterion [ 24] was proved to give better 
results than information gain in some cases. We can also use statistics measures like 
permutation [ 25] or probability measure [ 26, 27]. 

5.3.1 Gini Index 

The Gini index [ 28] measures the probability of misclassification by a split. It means 
that the lower value of Gini index is a lower probability of misclassification of a 
given split. We can calculate the index value as 

.IG(X) = 1 −
m∑

i=1

p2i , (5.1) 

where .m is the number of potential discrete values or ranges of continuous values, 
and . p is the probability of a specific feature value in the data set. The values of the 
Gini index are shown in the Fig. 5.5. If we assume we have a customer segmentation 
problem to solve where the label is the information if the customer buy or not. It 
depends on a few features and one of the features is the city. Let the city be Berlin 
and to simplify we have 4 cases where the customer buy and one where not. The 
index value of this split, based on Berlin would be:
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Fig. 5.5 Gini index values 
depending on the probability 

. IG(Berlin) = 1 −
(
4

5

)2

+
(
1

5

)2

= 1 − (0.64 + 0.04) = 0.32.

The index needs to be calculated for each city against the other options if we want to 
build a binary tree because in this case, we can split only into two groups. It means 
that for the location feature, we need to calculate every possible combination of sets. 
In the case of three feature values, we have to calculate three Gini index value sets. 
The features gini index calculates the gini index for the split and takes the values of 
the features into consideration. The general formula of the feature split gini index is 
defined as 

.IG(feature) = 1 −
n∑

i=1

pi ∗ IG(Xi ), (5.2) 

where .Xi is the split set. For three cities: Berlin, London, and Paris we need to 
calculate the split gini index for three possible splits. If we assume we have an equal 
number of cities: 

• Berlin versus London and Paris 

. IG(feature)1 = 1 −
(
1

3
I (Berlin) + 2

3
I (London,Paris)

)
,

• London versus Berlin and Paris 

. IG(feature)2 = 1 −
(
1

3
I (London) + 2

3
I (Berlin,Paris)

)
,

• Paris versus London and Berlin 

.IG(feature)3 = 1 −
(
1

3
I (Paris) + 2

3
I (London, Berlin)

)
.
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We should calculate all possible splits on each feature to get the final lowest value 
of the Gini index in each leaf. A small Gini index value means more objects of the 
same label in a leaf. We should split on the highest gini index value to get in the leafs 
lower and lower values in each next split. 

5.3.2 Entropy and Information Gain 

Entropy (information gain) [ 29] is used to measure how many information we have 
within a set. In other words, if there are more objects of the same label in a set there 
higher the entropy measure is. It means that higher entropy is a better factor for a 
split. Possible values are given in Fig. 5.6. The formula for the entropy is defined as 

.E(X) = −
m∑

i=1

pi log2 pi. (5.3) 

To take a decision on what features should we split on, we need to calculate the 
information gain value based on the features entropy and the total entropy that we 
get based on all features: 

.IG(Feature) = E(Decision) − E(Feature), (5.4) 

where.E(Decision) is the total entropy where we take into consideration all features. 
We use for Eq. 5.3. If we have 9 objects in our data set, the .E(Decision) takes all 
objects for example: 

. E(Decision) = −
(
5

9
log2

5

9
+ 4

9
log2

4

9

)
= −1(−0.0471142 − 0.5199787) = 0.991076.

The feature entropy is calculated as a weighted entropy of all possible entropy values 
of a given features: 

Fig. 5.6 Entropy values for 
a given probability
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.E(Feature) =
m∑

i=0

pi E(xi ). (5.5) 

Let’s assume we have the same 9 objects where the locations are equally divided by 
London, Berlin, and Paris. If we have two objects with a positive decision where the 
location is London, one for Berlin, and none for Paris, we get 

. E(London) = −1

((
2

3

)
log2

(
2

3

)
+

(
1

3

)
2 log2

(
1

3

))

= 0.918296,

. E(Berlin) = −1

((
1

3

)
log2

(
1

3

)
+

(
2

3

)
2 log2

(
2

3

))

= 0.918296,

. E(Paris) = −1

((
3

3

)
2 log2

(
3

3

))

= 0.

The location entropy will be 

. E(Location) = 3

9
∗ 0.918296 + 3

9
∗ 0.918296 + 0 = 0.6121947.

The information gained for the location features is 

. IG(Location) = 0.991076 − 0.6121947 = 0.3788813.

We should do it for all features and compare the values. The highest should be taken 
as the feature that we split on. The data set where we do the calculation is the same 
as in Gini index and is limited to the data set of a node that we want to split. 

5.4 Binary Trees with Classification and Regression Trees 
Method 

Classification and regression trees (CART) are one of the most popular and one of 
the first decision tree methods [ 30]. Build a decision tree based on a binary tree. This 
means that it divides the data set into two on each level of a tree. CART uses the Gini 
index to find the best possible split. The method consists of the following steps:
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1. calculate the Gini index for each feature, 
2. take the lowest value of the Gini index and split the node into two child nodes, 
3. repeat the steps until we have all child nodes. 

The leaf in CART looks like 

Tree helper functions 

There are several helper functions that are used by our CART method. We use the 
methods to manipulate the tree, use these to get the Gini index or make the split. We 
have seven methods. The implementation of each function is given in Listing 5.2. 

1 def  get_number_of_labels_for_value(  node ,  objects  ,  feature_id  ,  label  ):  
2 count  =  0  
3 if  not  isinstance  (  objects  ,  list  ):  
4 elements_list  =  [  objects  ]  
5 else  : 
6 elements_list  =  objects  
7 

8 column_elements  =  get_node_elements_column  (  node  .  elements  ,  feature_id  )  
9 

10 for  i in  range  ( len  (  elements_list  )):  
11 for  j in  range  ( len  (  column_elements  )):  
12 if column_elements  [j]  ==  elements_list  [i]:  
13 if node  .  labels  [j]  ==  label  :  
14 count  =  count  +  1  
15 return  count  
16 

17 def  get_node_elements_column  (  elements  ,  feature_id  ):  
18 return  np.  array  (  elements  )  [...  ,  feature_id  ].  tolist  ()  
19 

20 def  check_completed  (  labels  ,  elements  ):  
21 ratio  =  len  (  get_unique_labels  (  labels  ))  
22 if ratio  ==  1:  
23 return  True  
24 elements  =  sorted  (  elements  )  
25 duplicated  =  [  elements  [i]  for  i in  range  ( len  (  elements  ))  if  i == 0  or  

elements  [i]  !=  elements  [i  − 1]]  
26 if  len  (  duplicated  )  ==  1:  
27 return  True  
28 return  False  
29 

30 def  get_unique_labels  (  labels  ):  
31 return  np.  unique  (np.  array  (  labels  )).  tolist  ()  
32 

33 def  get_unique_values  (  elements  ):  
34 features_number  =  len  (  elements  [0])  
35 unique  =  []  
36 for  i in  range  (  features_number  ):  
37 unique  .  append  (np.  unique  (np.  array  (  elements  )[:  ,i]))  
38 return  unique  
39 

40 def  is_leaf_completed  (  node  ):  
41 if node  .  is_completed  ():  
42 if node  .  get_L  ()  !=  None  and  not  node  .  get_L  ().  is_completed  ():  
43 return  node  .  get_L  ()  
44 elif  node  .  get_R  ()  !=  None  and  not  node  .  get_R  ().  is_completed  ():  
45 return  node  .  get_R  ()  
46 elif  node  .  get_L  ()  ==  None  and  node  .  get_R  ()  ==  None  :  
47 return  None  
48 elif  node  .  get_L  ().  is_completed  ()  or  node  .  get_R  ().  is_completed  ():
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49 new_node  =  is_leaf_completed  (  node  .  get_L  ())  
50 if new_node  ==  None  :  
51 return  is_leaf_completed  (  node  .  get_R  ())  
52 else  : 
53 return  new_node  
54 else  : 
55 return  None  
56 return  node  
57 

58 def  get_current_node  (  node  ):  
59 return  is_leaf_completed  (  node  )  

Listing 5.2 Tree helper functions 

The method get_unique_labels returns the unique labels based on the list of 
labels given in the argument. The method get_unique_values is a bit more 
complex because it is not only about unique objects in a list, but about unique 
objects in a list of lists. is_leaf_completed is a very important method to 
check if a leaf needs to be split or not. It goes through the node given in the argu-
ment and checks each leaf that still needs to be split or not. It goes deeper and 
deeper through the tree until it finds a leaf. If not, it returns a None value. The 
get_number_of_labels_for_value method is used by the Gini index cal-
culation method where the number of labels occurrence for a specific feature value is 
a part of the Gini equation. This method uses the get_node_elements_column 
method to get the feature columns. The sixth method check_completed is used 
by the split method to check if the leaf can be marked as the one that still needs to 
be split or not. The last one get_current_node is used to find the current leaf 
to split. It uses the is_leaf_completed method to make the check. 

Gini index 

The Gini index is calculated with the equations explained in the previous section. 
For a binary tree, it can be implemented as in the Listing 5.3. 

1 def  calculate_gini  (node ,  splits  ,  feature_id  ):  
2 obj_count  =  len  (  node  .  labels  )  
3 

4 left_count  =  np.  count_nonzero  (np.  isin  (np.  array  (  node  .  elements  )  
5 [:  ,  feature_id  ],  splits  [0])  )  
6 right_count  =  obj_count  − left_count  
7 

8 prob_sum_left =  1  
9 prob_sum_right  =  1  

10 

11 for  label  in  get_unique_labels  (  node  .  labels  ):  
12 prob_sum_left =  prob_sum_left  − (  get_number_of_labels_for_value  
13 (node ,  splits  [0]  ,  feature_id  ,  label  )/  left_count  )  ∗∗2 
14 prob_sum_right  =  prob_sum_right  − (  get_number_of_labels_for_value  
15 (node ,  splits  [1]  ,  feature_id  ,  label  )/  right_count  )  ∗∗2 
16 return  1 − (  left_count  /  obj_count  )∗ prob_sum_left  − (  right_count  /  

obj_count  )∗ prob_sum_right  

Listing 5.3 Gini index method 

In the binary tree, we have only the left and right leaf. As arguments, we get the 
current node, a list of split objects, and the feature. In the fourth line, we get
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the left_count which is the number of objects of a given value for feature 
feature_id. In the loop, we go through each label and find the values that are 
available in the data set for it. This gives us the Gini index values for the left and 
right leaf. The function returns the feature gini index using the previously calculated 
left and right gini indices. 

Split 

The split is done in two steps in the Code 5.4. The method get_split_ 
candidates gets unique values of a feature as an argument and returns all possible 
split scenarios as a list. Loops over the unique values and adds one value as the left 
split and the rest as the right. The loop ends when there are no more feature values 
left. 

1 def  get_split_candidates  (  unique_values  ):  
2 split_list  =  []  
3 for  i in  range  ( len  (  unique_values  )):  
4 current_list  =  []  
5 temp_list  =  copy  .  deepcopy  (  unique_values  )  
6 current_list  .  append  (  temp_list  [i])  
7 del  temp_list  [i]  
8 current_list  .  append  (  temp_list  )  
9 split_list  .  append  (  current_list  )  

10 return  split_list  
11 

12 def  split_node  (  current_node  ,  value ,  split_id  ,  split_history  ):  
13 left_leaf  =  []  
14 left_leaf_labels  =  []  
15 left_leaf_ids  =  []  
16 right_leaf  =  []  
17 right_leaf_labels  =  []  
18 right_leaf_ids  =  []  
19 for  i in  range  ( len  (  current_node  .  elements  )):  
20 if current_node  .  elements  [i][  split_id  ]  ==  value  :  
21 left_leaf  .  append  (  current_node  .  elements  [i])  
22 left_leaf_labels  .  append  (  current_node  .  labels  [i])  
23 left_leaf_ids  .  append  (  current_node  .  ids  [i])  
24 else  : 
25 right_leaf  .  append  (  current_node  .  elements  [i])  
26 right_leaf_labels  .  append  (  current_node  .  labels  [i])  
27 right_leaf_ids  .  append  (  current_node  .  ids  [i])  
28 if  len  (  right_leaf_labels  )  ==  0  or  len  (  left_leaf_labels  )  ==  0:  
29 current_node  .  set_completed  ()  
30 return  current_node  ,  split_history  
31 split_history  .  append  ([  str  (  current_node  .  ids  ),  str  (  left_leaf_ids  )])  
32 split_history  .  append  ([  str  (  current_node  .  ids  ),  str  (  right_leaf_ids  )])  
33 current_node  .  set_L  (  BinaryLeaf  (  left_leaf  ,  left_leaf_labels  ,  

left_leaf_ids  ))  
34 current_node  .  set_R  (  BinaryLeaf  (  right_leaf  ,  right_leaf_labels  ,  

right_leaf_ids  ))  
35 current_node  .  set_split  (  split_id  )  
36 current_node  .  set_completed  ()  
37 if check_completed  (  left_leaf_labels  ,  left_leaf  ):  
38 current_node  .L.  set_completed  ()  
39 if check_completed  (  right_leaf_labels  ,  right_leaf  ):  
40 current_node  .R.  set_completed  ()  
41 return  current_node  ,  split_history  

Listing 5.4 Splitting function in CART method
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The second method divides. It takes the node that we want to split as one of the 
arguments. The second is the value of the feature that we assign to the left leaf. 
The third argument is the split_id that has the highest gini index. The loop is 
the main part of the function where the split to the left and right leaf happens. We 
add node objects, labels, and ids to the new pages. The ids are saved in a leaf 
property, because sometimes it is easier to use the id of an object rather than the 
whole description of it. Especially when we want to plot it. The last argument is used 
to save the split history in one variable. 

Build a tree  

In the building method, we use the data set of objects (feature vectors) and the labels 
that correspond to them. The build method implemented in the Listing 5.5 consists 
of four parts: initialization part, find the best combination of features for the split, 
make the split, and find the next node to split. 

1 def  build  (  data_set  ,  labels  ):  
2 stop_criterion  =  False  
3 ids  =  list  ( range  ( len  (  data_set  )))  
4 root  =  BinaryLeaf  (  data_set  ,  labels  ,  ids  )  
5 current_node  =  root  
6 split_history  =  []  
7 

8 while  stop_criterion  ==  False  :  
9 unique_values  =  get_unique_values  (  current_node  .  get_elements  ())  

10 max_unique_id  =  0  
11 max_split_id  =  0  
12 max_value  =  0.0  
13 for  feature_id  in  range  ( len  (  unique_values  )):  
14 if  len  (  unique_values  [  feature_id  ])  ==  1:  
15 continue  
16 split_candidates  =  get_split_candidates  (  unique_values  
17 [  feature_id  ].  tolist  ())  
18 for  j in  range  ( len  (  split_candidates  )):  
19 current_value  =  calculate_gini  (  current_node  ,  

split_candidates  [j],  feature_id  )  
20 if max_value  <  current_value  :  
21 max_unique_id  =  feature_id  
22 max_split_id  =  j  
23 max_value  =  current_value  
24 current_node  ,  split_history  =  split_node  (  current_node  ,  

unique_values  [  max_unique_id  ][  max_split_id  ],  max_unique_id  ,  
split_history  )  

25 new_node  =  get_current_node  (  root  )  
26 if new_node  !=  None  :  
27 current_node  =  new_node  
28 else  : 
29 stop_criterion  =  True  
30 return  root ,  split_history  

Listing 5.5 CART tree build main method 

The initialization part consists of the root node setup. We create just an instance of a 
BinaryLeaf and set all properties like the objects, labels, and ids. The history is 
set to an empty list. The stop criterion is set to False and is checked at the end of the 
loop. In the second part, we loop over the unique feature values to find the maximum 
Gini index. It’s calculated in line 18 and the check is done in the line after. The split
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is done for the best split candidate in line 23. Finally, we get the next node that can 
be split in line 24. If the returned value is different than None, the stop criterion is 
not met and we use the next node and take the actions again from the beginning of 
the loop. The new node is searched using the root node and not the currently used 
node. This guarantees that we check all possible nodes in the tree. 

1 def  plot_tree  (  split_history  ):  
2 tree  =  pydot  .  Dot  (  graph_type  =’graph  ’) 
3 for  split  in  split_history  :  
4 new_edge  =  pydot  .  Edge  (  split  [0]  ,  split  [1])  
5 tree  .  add_edge  (  new_edge  )  
6 tree  .  write  (’  cart_tree_new  .  png  ’, format  =’png  ’) 

Listing 5.6 CART tree build main method 

When the tree is built, we can also plot using the pydot package. It is dedicated to 
plot nodes and connections between these. In the Listing 5.6 we use this library and 
loop over the split history to draw the tree. The method loops over each split and 
adds nodes in line 4 and the connection between the nodes in line 5. We can save it 
as an image as shown in line 6. 

Example 1 (Customer segmentation with CART decision tree method) In this exam-
ple, we use a decision tree for customer segmentation. The goal is to find out if there 
are some features that are specific to customers who buy the product or not. We 
simplified the data set to be able to follow the steps of the CART method. The data 
set that we use in this example is given in Table 5.2. We have four features: loca-
tion, product category, customer gender, and information if the customer checked the 
review before the purchase. CART generates binary trees, so we need to calculate 
the Gini index for each feature. Let us take the location feature as the first feature 
and calculate the Gini index for it. We have three split candidates that we explained 
already: 

• London versus Berlin and Paris 
• Berlin versus London and Paris, 
• Paris versus London and Berlin. 

The first split candidates are London versus Berlin and Paris. The Gini index for 
London can be calculated as 

. IG(London) = 1 −
(
2

7

)2

+
(
5

7

)2

= 1 − (0.081 + 0.51) = 0.4087.

We have seven objects where the location feature is London. The decision ratio is 
two to five, which means that two customers from London bought our product and 
five did not. For the right leaf, we get 

.IG(Paris and Berlin) = 1 −
(
7

8

)2

+
(
1

8

)2

= 1 − (0.76 + 0.015) = 0.22.
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Table 5.2 Customer segmentation data set example 

ID Location Category Gender Product 
review check 

Customer 
decision 

1 Berlin Furniture Male Yes True 

2 London Furniture Male Yes True 

3 Berlin Furniture Female Yes False 

4 Berlin Textile Female Yes True 

5 London Electronics Male Yes False 

6 London Textile Female Yes False 

7 Paris Textile Male No True 

8 Berlin Electronics Male Yes True 

9 Paris Electronics Male No True 

10 London Electronics Female Yes True 

11 Paris Furniture Female No True 

12 Berlin Textile Female No True 

13 London Electronics Female No False 

14 London Furniture Female Yes False 

15 London Textile Female No False 

We have seven objects from London, and the total number of objects in our data 
set is 15. This means that we have eight Berlin and Paris objects together. For both, 
seven bought the product and one did not. Now, we can calculate the Gini index for 
the location feature: 

. I 1G(Location) = 7

15
∗ 0.4087 + 8

15
∗ 0.22 = 1 − 0.1907 − 0.1173 = 0.69194.

The results for all combinations of all features are given in Table 5.3. If we do the first 
split we end with a tree of two levels that looks as in Fig. 5.7. To find the next node we 
first go through the left leafs and next to the right if there is no node to be split on the 
left side. We can see it in the Listing 5.2 in the method is_leaf_complete. The  
first test is done on line 42 on the left node and on the right. We can do it randomly 
or change the order to start the split in a different order. In the left-first approach, the 
next node is the one with all customers from London. In the second node, we repeat 
the steps from the first step. This time we have customers only from London and this 
is the reason why we cannot split on location features this time. In the second step, 
we get the Gini index values as in Table 5.4. This time we split up into categories. 
We have two Gini indices that have the same values, but in Listing 5.5 in line 19, 
we have a less sign that can be replaced with less or equal sign to get the last option 
if there are two same values. After the second step, we get a tree as in Fig. 5.8. The  
difference in the second split is that all London customers that are looking on textile 
products do not buy the product. The other two features do not matter for this path.
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Table 5.3 Gini index split 
values for all features of the 
example data set in the first 
step 

Nodes Gini index 

London 0.4087 

Paris and Berlin 0.22 

Gini index 0.69194 

Berlin 0.32 

London and Berlin 0.5 

Gini index 0.56 

Paris 0 

London and Berlin 0.5 

Gini index 0.6 

Category Gini index 

Furniture 0.48 

Textile and electronics 0.48 

Gini index 0.59 

Textile 0.48 

Furniture and electronics 0.48 

Gini index 0.52 

Electronics 0.48 

Textile and furniture 0.48 

Gini index 0.52 

Gender Gini index 

Male 0.49 

Female 0.27 

Gini index 0.59 

Review Gini index 

Review 0.44 

Direct 0.49 

Gini index 0.52 

We come to this conclusion because all objects in the node marked with red have the 
same negative label. After a few more steps the method ends, because there are no 
more nodes to split. The final tree looks as shown in Fig. 5.9. The red nodes are the 
nodes with only negative labels and the blue nodes are the nodes where customers 
buy the product. As a company, we want to have such a solution to understand the 
profile of our customers and add changes to our solution to fill more of these red 
nodes in blue ones.
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Fig. 5.7 Tree after the first step of the CART method 

Table 5.4 Gini index split 
values for category, gender, 
and review features of the 
example data set in the 
second step 

Category Gini index 

Furniture 0.5 

Textile and electronics 0.32 

Gini index 0.63 

Textile 0 

Furniture and electronics 0.48 

Gini index 0.66 

Electronics 0.44 

Textile and furniture 0.375 

Gini index 0.59 

Gender Gini index 

Male 0.32 

Female 0.5 

Gini index 0.63 

Review Gini index 

Review 0 

Direct 0.48 

Gini index 0.66 

5.5 Univariate Non-binary Trees with C4.5 Method 

This method [ 31] uses the entropy as a measure of the split of the nodes. It does 
not create a binary tree so that each node level can have more than two children. 
The algorithm steps are similar to those in the case of CART. The tree node is
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Fig. 5.8 Decision tree built on the second step of the CART method 

Fig. 5.9 Decision tree build using CART method based on the customer segmentation data set
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implemented in a different way to be compliant with the non-binary tree approach. 
It does not have the L and R properties, but instead, we have a list of child leafs that 
is set as a child_leafs property. The rest is the same as in the CART leaf. The 
implementation of the node is given in Listing 5.7. 

1 class  Leaf  :  
2 

3 def  __init__  (self ,  elements  ,  labels  ,  ids  ):  
4 self  .  child_leafs  =  []  
5 self  .  elements  =  elements  
6 self  .  labels  =  labels  
7 self  .  completed  =  False  
8 self  .  ids  =  ids  

Listing 5.7 A non-binary leaf 

The helper functions known from the CART are the same, because all except one 
work for binary and non-binary trees in the same way. This means that there are 
no changes in the helper methods except the is_leaf_completed method that 
takes the node as an argument. 

1 def  is_leaf_completed  (  node  ):  
2 if node  .  is_completed  ():  
3 child_nodes  =  node  .  get_child_leafs  ()  
4 if  len  (  child_nodes  )  ==  0:  
5 return  None  
6 is_child_to_return  =  False  
7 for  i in  range  ( len  (  child_nodes  )):  
8 if  not  child_nodes  [i].  is_completed  ():  
9 return  child_nodes  [i]  

10 else  : 
11 new_node  =  is_leaf_completed  (  child_nodes  [i])  
12 if new_node  !=  None  :  
13 is_child_to_return  =  True  
14 if is_child_to_return  :  
15 return  new_node  
16 return  node  

Listing 5.8 Helper function differences 

Instead of a check on the left and right nodes, in this case we need to loop over all 
child nodes and check which node is still one that can be split. 

Entropy 

The entropy is a short function in which we take the labels of a node as an argument. 
In the Listing 5.9 we get the unique labels and count them in the first step. 

1 def  calculate_entropy  (  labels  ):  
2 unique_labels  ,  labels_count  =  np.  unique  (  labels  ,  return_counts  =  True  )  
3 entropy  =  0  
4 size  =  len  (  labels  )  
5 for  i in  range  ( len  (  unique_labels  )):  
6 if labels_count  [i]  >  0:  
7 log2  =  log  ((  labels_count  [i]  ∗ 1.0)  /  (  size  ∗ 1.0)  ,  2)  
8 else  : 
9 log2  =  0.0  

10 entropy  =  entropy  − 1.0  ∗ ((  labels_count  [i]  ∗ 1.0)  /  size  )  ∗ log2  
11 return  entropy  

Listing 5.9 Entropy and information gain calculation for the C4.5 method
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Next, we loop over the unique labels and calculate the entropy values with . log2
for each label. Finally, we subtract the values from the results to get the deci-
sion entropy .E(Customer) for a given feature. This method is then used in the 
calculate_split_candidate_entropy to get the entropy for each split 
candidate. 

Split 

The split consists of two steps: possible splits entropy calculation and the split method 
itself. In the Listing 5.10 one of the possible implementations is given. In the method 
calculate_split_candidate_entropy we calculate the information grain 
based on the decision entropy given in the argument as full_entropy and the 
split candidates’ entropies. We loop over unique objects and count the labels assigned 
to each one. For each label for which the count is greater than 0, we add the entropy 
to the split_entropy. This part is the implementation of Eq. 5.3. The last line 
of this function is the implementation of Eq. 5.4. 

1 def  calculate_split_candidate_entropy  (  full_entropy  ,  labels  ,  elements  ,  
unique_labels  ,  unique_elements  ,  iter  ):  

2 split_entropy  =  0  
3 for  i in  range  ( len  (  unique_elements  )):  
4 indices  =  np.  where  (np.  array  (  elements  )  [...  ,  iter  ].  tolist  ()  ==  

unique_elements  [i])  
5 unique_size  =  len  (  indices  [0].  tolist  ())  
6 filtered_labels  =  np.  array  (  labels  )[  indices  ]  
7 for  j in  range  ( len  (  unique_labels  )):  
8 labels_count  =  filtered_labels  .  tolist  ().  count  (  unique_labels  
9 [j])  

10 if labels_count  >  0:  
11 log2  =  log  ((  labels_count  ∗ 1.0)  /  (  unique_size  ∗ 1.0)  ,  2)  
12 else  : 
13 log2  =  0.0  
14 split_entropy  =  split_entropy  − 1.0  ∗ ( 
15 (  labels_count  ∗ 1.0)  /  unique_size  ∗ 1.0)  ∗ log2  ∗ 

unique_size  ∗ 1.0  /  len  (  elements  )  ∗ 1.0  
16 return  (  full_entropy  − split_entropy  )  
17 

18 def  split  (  current_node  ,  split_values  ,  column_id  ,  split_history  ):  
19 new_leafs  =  []  
20 for  i in  range  ( len  (  split_values  )):  
21 indices  =  np.  where  (np.  array  (  current_node  .  get_elements  ())  [... ,  

column_id  ].  tolist  ()  ==  split_values  [i])  
22 new_leaf_elements  =  np.  array  (  current_node  .  get_elements  ())[  indices  

].  tolist  ()  
23 new_leaf_labels =  np.  array  (  current_node  .  get_labels  ())[  indices  ].  

tolist  ()  
24 new_leaf_ids  =  np.  array  (  current_node  .  get_ids  ())[  indices  ].  tolist  ()  
25 new_leaf  =  Leaf  (  new_leaf_elements  ,  new_leaf_labels  ,  new_leaf_ids  )  
26 split_history  .  append  ([  str  (  current_node  .  ids  ),  str  (  new_leaf_ids  )])  
27 if  len  (np.  unique  (  new_leaf_labels  ))  ==  1:  
28 new_leaf  .  set_completed  ()  
29 new_leafs  .  append  (  new_leaf  )  
30 current_node  .  set_child_leafs  (  new_leafs  )  
31 current_node  .  set_completed  ()  
32 return  current_node  ,  split_history  

Listing 5.10 C4.5 tree build main method
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The second function is similar to the one of CART that generates possible divisions. 
In the implementation of the function in Listing 5.4 the main difference compared 
to the CART method is the way how we make the split. The new_leaf variable 
contains the newly created leaf created in the loop based on the split_values. 
We set all three properties in the first part of the loop: labels, objects, and ids. In the 
second part, we check if this leaf can be split in the next loop of the method or is 
already a consistent leaf. 

The tree 

The building method is similar to the CART with a few small differences. An imple-
mentation is given in the Listing 5.11. 

1 def  build  (  root  ):  
2 stop_criterion  =  False  
3 split_history  =  []  
4 current_node  =  root  
5 unique_labels  =  get_unique_labels  (  root  .  get_labels  ())  
6 while  stop_criterion  ==  False  :  
7 unique_values  =  get_unique_values  (  current_node  .  get_elements  ())  
8 full_entropy  =  calculate_entropy  (  current_node  .  get_labels  ())  
9 max_entropy_id  =  0  

10 max_entropy_value  =  0  
11 for  i in  range  ( len  (  unique_values  )):  
12 split_entropy  =  calculate_split_candidate_entropy  (  full_entropy  

, 
13 

current_node  .  get_labels  ()  ,  
14 

current_node  .  get_elements  ()  ,  
15 

unique_labels  ,  
16 

unique_values  [i],  i)  
17 if split_entropy  >  max_entropy_value  :  
18 max_entropy_id  =  i  
19 max_entropy_value  =  split_entropy  
20 current_node  ,  split_history  =  split  (  current_node  ,  unique_values  [  

max_entropy_id  ],  max_entropy_id  ,  split_history  )  
21 new_node  =  get_current_node  (  root  )  
22 if new_node  !=  None  :  
23 current_node  =  new_node  
24 else  : 
25 stop_criterion  =  True  
26 return  root ,  split_history  

Listing 5.11 C4.5 tree build main method 

In the first part of the loop, we calculate the decision entropy and save it in the 
full_entropy variable. The method for each split then calculates the information 
gain and finds the lowest one. The last lines are exactly the same as in the CART 
tree-building method. 

Example 2 (Customer segmentation with C4.5) In this example, we calculate the 
entropies of each feature value. For the customer segmentation data set and the 
location feature first possible split we get
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. E(London) = −1

((
2

7

)
log2

(
2

7

)
+

(
5

7

)
2 log2

(
5

7

))

= −1(0.2857 ∗ (−1.807) + 0.7142 ∗ (−0.4895)) = 0.8617,

. E(Berlin) = −1

((
4

5

)
log2

(
4

5

)
+

(
1

5

)
log2

(
1

5

))

= −1(0.8 ∗ (−0.3219) + 0.2 ∗ (−2.319)) = 0.7218,

. E(Paris) = −1(
3

3
log2(1)) = 0.

The next step is to calculate the customer decision entropy. It is called also a target 
or total entropy: 

. E(Customer) = −1

(
9

15
log2

(
9

15

)
+ 6

15
log2

(
6

15

))

= −1(0.6 ∗ (−0.7365) + 0.4 ∗ (−1.3219)) = 0.9708.

Next, we need to calculate the entropy for the location feature: 

. E(Location) = 5

15
∗ 0.7218 + 7

15
∗ 0.8617 + 3

15
∗ 0 = 0.2406 + 0.4021 = 0.6427.

Finally, we can calculate the information gain for the location feature: 

. IG(Location) = E(Customer) − E(Location) = 0.9708 − 0.6427 = 0.3281.

We calculate the information gain for each feature. The customer decision entropy 
.E(Customer) stays the same for each feature. The entropies for each feature are 
given in Table 5.5. For the category features, the information gain is 0, because the 
entropies for each value are the same as the decision entropy. The data is divided in the 
same ratio for the category feature as for the whole data set. The gender information 
gain is the second highest value. The gain in product review feature information is 
low as well. The node is divided by the feature with the highest information gain. In 
the first step, it is the location feature. C4.5 will divide the root node into three leaf 
based on as shown in Fig. 5.10. The Paris node has already all objects of the same 
label. In this case, all Parisian customers buy the product. In the second step, we 
have two nodes to choose from: Berlin and London customers. For both nodes, we 
can skip the location feature entropy calculation, because there is only one unique 
value available. The decision entropy is calculated only on the node objects set and 
is for customers from Berlin in the level two node:
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Table 5.5 Entropy values for 
category, gender, and review 
features of the example data 
set in the first step of the C4.5 
method 

Category Entropy 

Furniture 0.97095 

Textile 0.97095 

Electronics 0.97095 

Category entropy 0.97095 

Information gain 0 

Gender Entropy 

Male 0.991076 

Female 0.65 

Gender entropy 0.85465 

Information gain 0.116296 

Review Entropy 

Review 0.9182958 

Direct 0.991076 

Product review entropy 0.961964 

Information gain 0.008986 

Fig. 5.10 First split with 
C4.5 method and the 
customer segmentation data 
set 

. E(Decision) = −1

(
1

5
log2

1

5
+ 4

5
log2

4

5

)
= 0.7219.

The category entropy equals to 1 for the furniture and zero for textiles and electronics: 

. E(Furniture) = −1

(
1

2
log2

1

2
+ 1

2
log2

1

2

)
= 1,

. E(Textile) = −1

(
0

2
log2

0

2
+ 2

2
log2

2

2

)
= 0,

.E(Electronics) = −1(1 log2 1) = 0.
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Table 5.6 Entropy values for category, gender, and review features of the example data set in the 
second step of the C4.5 method 

Gender Entropy 

Male 0.92183 

Female 0 

Gender entropy 0.55098 

Information gain 0.171 

Review Entropy 

Review 0 

Direct 0.81128 

Product review entropy 0.649 

Information gain 0.07289 

This gives us the entropy for the category features as 

. E(Category) = 2

5
.

This makes the information gain: 

. IG(Category) = 0.7219 − 0.4 = 03219.

The other results of the information gain and entropies are given in Table 5.6. The  
category feature has the highest information gain. The tree after the second split looks 
as shown in Fig. 5.11. This time two more nodes have objects with only one label. 
After a few more iterations we get the final tree. The final decision tree for customer 
segmentation using the C4.5 method is shown in Fig. 5.12. The final tree has five 
levels and 18 nodes, including 11 nodes with objects of the same label. Compared to 
the tree built using the CART method, this tree has less levels by one and less nodes. 
The conclusion is that the C4.5 can be used to build less complex tress. 

5.6 Multivariate Decision Trees with OC1 Method 

There are many multivariate decision tree methods. Just to mention a few of the most 
popular: 

• OC1, 
• LMDT, 
• CART-LC, 
• MARS.
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Fig. 5.11 Second step of the C4.5 method and customer segmentation data set 

Fig. 5.12 Decision tree based on the data set 5.2 build with the C4.5 method 

Some methods like CART-LC are the multivariate version of the CART method. 
The main difference between univariate and multivariate methods is that the deci-
sion is made based not on just one feature, but on more. It is easy to illustrate the 
advantages of this approach. In Fig. 5.13 the data set marked with red and blue is 
not linearly separable. The univariate tree method divides the feature space into 
several sections that can be summarized as a decision boundary marked with orange. 
With two features, we can draw a boundary marked with green. Such an approach 
requires fewer steps and is more efficient in many cases. The multivariate method
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Fig. 5.13 Linear separable 
example classified with 
univariate (marked yellow) 
and multivariate decision 
trees (marked green) 

Fig. 5.14 Multivariate 
decision tree based on data 
from Listing 5.13 

used to classify the data set in Fig. 5.13 can be written as a linear function as shown 
in Fig. 5.14. There are a few advantages of multivariate decision trees: 

• we split on more than one feature, which usually gives a tree with a smaller high 
value, which means a faster prediction, 

• solve non-linear classification problems. 

The disadvantage of a multivariate method is the parameters that need to be set. 
Almost every univariate decision tree method can be easily changed to multivariate 
methods. In this section, as the multivariate method, we show the implementation of 
the OC1 classifier. The OC1 classifier is divided into several steps: 

1. get possible hyperplanes . H , 
2. choose one hypothesis, 
3. perturb and find . v j , 
4. calculate gini index of each .Hi , 
5. choose .Hi with lowest gini index. 

The OC1 method builds binary trees. It
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Get possible hyperplanes 

In the method in Listing 5.12 we calculated all possible hyperplanes by calculating 
the Gini indices for each feature. It is kind of similar to what we have done in the 
CART method, but it will be fixed during the perturbation part of the OC1 method. 

1 def  get_all_possible_splits_by_gini  (  self ,  leaf  ):  
2 data_set  =  leaf  .  elements  
3 labels  =  leaf  .  labels  
4 ginis  =  []  
5 for  i in  range  (  self  .  feature_number  ):  
6 feature_ginis  =  []  
7 feature_column  =  data_set  [:  ,  i]  
8 for  feature  in  feature_column  :  
9 distinguish  =  feature_column  <=  feature  

10 left_labels =  labels  [  distinguish  ]  
11 right_labels  =  labels  [~  distinguish  ]  
12 gini  =  1  − self  .  calculate_gini  (  left_labels  )  − self  .  

calculate_gini  (  right_labels  )  
13 feature_ginis  .  append  ([  feature  ,  gini  ])  
14 ginis  .  append  (  min  (  feature_ginis  ))  
15 return  ginis  

Listing 5.12 Get all possible splits and sort it by gini index value 

In the method below (Listing 5.13) we compute the.Vj which gives us the knowledge 
if a given object is above or below the hyperplane. It can be formulated as 

.

d∑

i=1

ai xi + ad+1 > 0, (5.6) 

where .a1, . . . , ad+1 are coefficients. In our case .ad+1 is our label. 

1 def  get_coefficiency  (self ,  splits  ):  
2 scv  =  np.  zeros  (  len  (  splits  )  +1)  
3 min_split_index  =  np.  argmin  (  splits  )  
4 scv  [  min_split_index  ]  =  1  
5 scv[−1] = −splits  [  min_split_index  ][1]  
6 return  scv  

Listing 5.13 Calculate the coefficiencies 

The next step is to divide objects in the leaf into two sets which are above and below 
the hyperplane (see Listing 5.14). 

1 def  divide_data_hiperplane  (  self ,leaf ,  scv ):  
2 below  =  []  
3 above  =  []  
4 below_labels  =  []  
5 above_labels  =  []  
6 for  i in  range  ( len  (  leaf  .  elements  )):  
7 v  =  self  .  compute_v  (  leaf  .  elements  [i],  scv  )  >  0  
8 if v:  
9 above  .  append  (  leaf  .  elements  [i])  

10 above_labels  .  append  (  leaf  .  labels  [i])  
11 else  : 
12 below  .  append  (  leaf  .  elements  [i])  
13 below_labels  .  append  (  leaf  .  labels  [i])  
14 return  np.  array  (  below  ),  np.  array  (  above  ),  np.  array  (  below_labels  ),  np.  

array  (  above_labels  )  

Listing 5.14 Split the data based on the hyperplane
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We can compute the membership array as in Listing 5.15. 
1 def  compute_u  (self ,  element  ,  scv  ,  feature  ):  
2 return  (  scv  [  feature  ]  ∗ element  [  feature  ]  − self  .  compute_v  (  element  ,  scv  )  

)  /  element  [  feature  ]  

Listing 5.15 Calcualte membership matrix. U

The code is an implementation of the .Uj equation: 

.Uj = amx jm − Vj

x jm
. (5.7) 

Perturb 

In the method in Listing 5.16 we compute the .Vj which gives us the knowledge if a 
given object is above or below the hyperplane. It can be formulated as . 

∑d
i=1 ai xi +

ad+1 > 0, where .a1, . . . , ad+1 are coefficients. In our case, .ad+1 is our label. 
1 def  compute_v  (self ,  element  ,  scv  ):  
2 return  np. sum  (np.  multiply  (  element  ,  scv  [:−1])) + scv[−1] 

Listing 5.16 Calcualte V 

The perturbation function is the core part of the OC1 method. Calculate different 
Gini indices for different combinations of features. We get the combination with the 
best Gini index. We fix the previously calculated coefficients as in Listing 5.17. 

1 def  perturb  (self ,  leaf ,  scv ,  feature  ,  old_gini  ):  
2 u  =[]  
3 for  element  in  leaf  .  elements  :  
4 u.  append  (  self  .  compute_u  (  element  ,  scv  ,  feature  ))  
5 splits  =  np.  sort  (np.  array  (u))  
6 am = []  
7 for  split  in  splits  :  
8 new_scv  =  scv  
9 new_scv  [  feature  ]  =  split  

10 below ,  above ,  below_label  ,  above_label  =  self  .  
divide_data_hiperplane  (leaf ,  scv )  

11 gini  =  1  − self  .  calculate_gini  (  below_label  )  − self  .  calculate_gini  
12 (  above_label  )  
13 am.  append  ([  new_scv  ,  gini  ])  
14 am  =  np.  array  (am)  
15 best_split_index  =  np.  argmin  (am  [:  ,1])  
16 if am[  best_split_index  ][1]  <  old_gini  :  
17 return  am[  best_split_index  ][1] ,  am[  best_split_index  ][0]  
18 elif  am[  best_split_index  ][1]  ==  old_gini  :  
19 if random  ()  <  0.3:  
20 return  am[  best_split_index  ][1] ,  am[  best_split_index  ][0]  
21 return  old_gini  ,  scv  

Listing 5.17 Perturb phase implementation 

Choose the one with the lowest gini index value 

Compared to C4.5 and CART we have one more variable R, which is a parameter 
that is used to set the number of loops to randomly choose the feature to check if a 
feature change can give a better split. See build_level in Listing 5.18.
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1 def  build_level  (  self  ):  
2 leaf  =  self  .  find_current_level_data  ()  
3 if leaf  ==  None  :  
4 return  
5 splits  =  self  .  get_all_possible_splits_by_gini  (  leaf  )  
6 split_coefficiency_vector  =  self  .  get_coefficiency  (  splits  )  
7 below ,  above ,  below_label  ,  above_label  =  self  .  divide_data_hiperplane  
8 (leaf ,  split_coefficiency_vector  )  
9 gini  =  1  − self  .  calculate_gini  (  below_label  )  − self  .  calculate_gini  

10 (  above_label  )  
11 for  c in  range  (  self  .R):  
12 feature  =  randint  (0  ,  len  (  leaf  .  elements  [0])−1) 
13 gini ,  split_coefficiency_vector  =  self  .  perturb  (leaf ,  

split_coefficiency_vector  ,  feature  ,  gini  )  
14 below ,  above ,  below_label  ,  above_label  =  self  .  

divide_data_hiperplane  (leaf ,  split_coefficiency_vector  )  
15 left_leaf  =  Leaf  (  below ,  below_label  )  
16 right_leaf  =  Leaf  (  above ,  above_label  )  
17 leaf  .  set_completed  ()  
18 if  len  (np.  unique  (  below_label  ))  ==  1:  
19 left_leaf  .  set_completed  ()  
20 if  len  (np.  unique  (  above_label  ))  ==  1:  
21 right_leaf  .  set_completed  ()  
22 if self  .  utils  .  compare_two_leafs  (leaf ,  left_leaf  )  or  self  .  utils  .  

compare_two_leafs  (leaf ,  right_leaf  ):  
23 leaf  .  set_completed  ()  
24 else  : 
25 leaf  .  set_R  (  right_leaf  )  
26 leaf  .  set_L  (  left_leaf  )  
27 self  .  build_level  ()  

Listing 5.18 Building method that combines all presented methods 

5.7 Quality Metrics and Tree Pruning 

Decision trees can like other methods overfit. Pruning methods can be used to reduce 
or avoid overfitting. As explained earlier in this chapter, pruning is one of the tree oper-
ations. Considering pruning operation we should apply Occam’s Razor approach. It 
says that everything should be made as simple as possible, but not simpler. In other 
words, if we have a tree that is shorter and gives the same error rate as a higher one, 
we should keep the shorter one as the more appropriate. We should keep the tree 
short to make the training and prediction faster. We can divide pruning methods into 
two groups: 

• pre-pruning, 
• post-pruning. 

In [ 1] both groups are called respectively: direct and validation. Pre-pruning methods 
are done within the tree-building process. It means that the method knows more about 
the way how the tree is been built. This is why such methods are also called direct. 
Execution of such methods takes usually much more time than post-pruning methods. 
Post-pruning methods are the opposite of pre-pruning methods. The execution is done 
after the tree has been built. This kind of method validates if the tree has been built
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good enough. If not it reduces the number of leafs to make the tree shorter and less 
complex. 

There are many direct pruning methods [ 32– 41]. We only describe two that are 
used in methods that we explained earlier in this chapter. Direct methods are used 
during the tree construction. It means we prune the tree during the training phase. 
It is more cost efficient than validation methods as we can change/prune the tree 
immediately. 

Validation methods usually go through the whole tree and calculate some metrics 
at each node or level to prune the tree. Examples of validation methods are: 

• reduced error pruning, 
• error complexity pruning, 
• minimum error pruning, 
• cost-based pruning, 
• and many more. 

Minimum number of objects 

In this method of pruning, the minimum number of objects is specified as a threshold 
value. Whenever a split is made that yields a child leaf that represents less than 
the minimum number from the data set, the parent node and the child node are 
compressed to a single node. 

.χ2 pruning method 

This approach to pruning is to apply a statistical test to the data to determine whether 
a split on some feature.Xk is statistically significant, in terms of the effect of the split 
on the distribution of classes in the partition on the data induced by the split. We can 
perform chi-squared test as 

.χ2 =
∑ (observed value − expected value)2

expected value
. (5.8) 

We reject the split if the feature.Xk is not related to the classification of the data given 
the features. 

Reduced error pruning 

The reduced error pruning method is the simplest and most understandable method 
in decision tree pruning. This method considers each of the decision nodes in the tree 
to be candidates for pruning, consisting of removing the subtree rooted at that node,



5.7 Quality Metrics and Tree Pruning 161

making it a leaf node. The available data are divided into three parts: the training 
examples, the validation examples used for pruning the tree, and a set of test examples 
used to provide an unbiased estimate of accuracy over future unseen examples. If 
the error rate of the new tree would be equal to or smaller than that of the original 
tree and that subtree contains no subtree with the same property, then the subtree is 
replaced by leaf node, which means pruning is done. 

Error complexity pruning 

In error complexity pruning is concerned with calculating the error cost of a node. 
Finds the error complexity at each node. The error cost of the node is calculated 
using the following equation: 

.R(t) = r(t) × p(t), (5.9) 

where .r(t) is error rate of a node which is given as 

.r(t) = number of misclassified

numer of all objects in node
, (5.10) 

and .p(t) is the probability of occurrence of a node which is given as 

.p(t) = number of objects in node

number of all objects
. (5.11) 

Additionally, we need to calculate the error cost of subtree . T of a given node: 

.R(T ) =
∑

R(i), (5.12) 

where. i is the number of leaves of the node. t . The error complexity is then calculated 
as follows: 

.a(t) = R(t) − R(T )t

number of leaves − 1
(5.13) 

The method consists of the following steps: 

1. . a is computed for each node, 
2. the minimum. a node is pruned, 
3. the above is repeated and a forest of pruned tree is formed, 
4. the tree with the best accuracy is selected.
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Chapter 6 
Support Vector Machine 

Support Vector Machine (SVM) is a classifier that was fully introduced by Vapnik 
in [ 1, 2], however, it was first mentioned in [ 3]. The standard SVM is a binary linear 
classifier, i.e., it can separate the samples from the two classes only and only when 
they are linearly separable. SVM tries to find an optimal separating hyperplane. It is 
a hyperplane that distinguishes elements of the two different classes in an efficient 
way. What exactly we mean by optimal and efficient is described later in this chapter. 
The equation describing the hyperplane is calculated using the samples from the 
training data set. This means that some noisy samples can affect the result of the 
classification. To avoid it, the so-called soft margin approach was proposed by Cortes 
and Vapnik in [ 4]. This approach is presented in one of the sections in the chapter. As 
we will see from the next sections the calculation of the separating hyperplane in the 
SVM requires solving the convex optimization problem with some constraints. The 
solution we use in SVM is based on Lagrange multipliers. A step-by-step explanation 
is provided in Sect. 6.1. 

Several different types of SVM methods exist. In this book, we focus only on the 
most popular ones. We explain the common C-SVM and .ν-SVM in Sect. 6.2 and in 
Sect. 6.3. 

The real-world problems are usually not linearly separable so this assumption 
of the SVM limits its usage. However, the introduction of kernel functions allows 
us to move a problem to a higher dimensional feature space in which the problem 
can become linearly separable. It is even possible to move the problem to infinite-
dimensional space. Obviously, we should use non-linear mapping which means that 
the problem has a non-linear decision boundary in the original space. It is described 
in the Sect. 6.4. 

The last point that is explained in this chapter is related to some extensions of the 
SVM classifier. We present a special type of SVM which can deal with one-class 
problems as well. This idea is described in the Sect. 6.5. We also show how to  use  
SVM for one and multiclass problems. We should use some problem decomposition 
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methods to apply the SVM to classify more than two classes. Two simple methods 
one-vs-one and one-vs-rest are described in this chapter. 

General overview 

SVM is a binary classifier, so we consider two classes and to simplify the next 
examples, we use a two-dimensional feature space. For now, let us assume that the 
problem is linearly separable as shown in Fig. 6.1. The line that distinguishes objects 
of both classes can be described by the following equation: 

.w0 + w1x1 + w2x2 = 0. (6.1) 

It means that if we find such a line then for all objects in the feature space repre-
senting the class marked red on Fig. 6.1 we have 

.w0 + w1x
1
1 + w2x

1
2 > 0, (6.2) 

and 
.w0 + w1x

−1
1 + w2x

−1
2 < 0, (6.3) 

where all objects representing the blue class we have two features.x−1 = (x−1
1 , x−1

2 ), 
and, respectively, for the red objects. 

The questions that we can set here are which line of Fig. 6.1 is the best possible? 
What does the best possible actually mean? We can draw different lines as shown 
in Fig. 6.2. Some are better than others. For each of the lines, Eqs. 6.2 and 6.3 hold. 
We can assume that the best line is the line where we can secure the best accuracy 
of the separation of the unseen samples. The line that distinguishes between objects 
of two different classes is called a hyperplane. It is a surface that separates between 
objects in an n-dimensional feature space. In a two-dimensional space, it would be a 

Fig. 6.1 Linear separable 
classification problem, where 
each object is marked with 
red or blue depending on the 
assigned class
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Fig. 6.2 A few possible 
separation options 

line. We will come back to the definition of the hyperplane later. The hyperplane . h1
does not seem to be a good choice since it is very close to red objects. The second 
line.h2 is better; however, it is very close to red objects on one end and close to blue 
on the other end. The hyperplane .h3 is similar to . h2. Using both hyperplanes would 
classify more as a blue class on one end and more as a red class on the other end. Our 
intuition tells us that the fourth hyperplane. h4, which maximizes the distance between 
the closest samples of both classes from the separation line, will be the best choice. 
We can prove on the basis of the Probability Approximately Correct (PAC) learning 
theory [ 5] that our intuition is good. The last approach which maximizes the distance 
between the separating line and the closest samples from both classes, we will call 
the maximum-margin approach or less formally the widest street approach because 
it leads the widest possible street between the points representing the samples. 

Maximum margin approach 

Before we start to analyze the problem of how to find the separating line with the 
maximum margin, let us try to generalize our task. Instead of considering the two-
dimensional feature space, let us assume that we have .p features. For now, we 
considered a two-dimensional feature space, but as we know from the previous 
chapters, a feature space usually has more than two dimensions. Our hyperplane 
will become a subspace of the dimension.p − 1 in the feature space which we call a 
hyperspace. The equation describing the line changes from 6.1 and our hyperplane 
is defined as 

.w0 + w1x1 + . . . ,+wpxp = 0. (6.4) 

Now, this hyperspace divides the feature space into two sub-spaces: 

.w0 + w1x1 + . . . ,+wpxp > 0 (6.5)
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we assign the label .yi = 1 and when: 

.w0 + w1x1 + . . . ,+wpxp < 0 (6.6) 

we assign the label.yi = −1. In that way, we separate a.p-dimensional feature space 
into the two sub-spaces, classifying the points.xi as two classes.{−1, 1}. This is valid 
for a linearly separable case. 

Before we look at the problem of finding the hyperplane with the maximum margin 
or, in other words, the optimal hyperplane for a given set of feature vectors, let us 
look for a more convenient version of Eq. 6.4. Assuming that .w = (w1, . . . , wp), 
.x = (x1, . . . , xp) and .b = w0 we get the following: 

.wT x + b = 0. (6.7) 

This is a vectorized version of Eq. 6.4. Now, the distance. d of the defined hyperspace 
from the origin can be given as 

.d = b

||w|| , (6.8) 

where .||w|| means the distance between the hyperplane and the objects. We need 
to find those .w and . b that divide the set of training objects .x1, . . . , xn ∈ Rp by the 
maximum margin. We assume for now that the problem is linearly separable, so 
.wT xi + b > 0 or .wT xi + b < 0 for each feature vector from the training set. We 
also assume that we pick a hyperplane that is equally distant from the closest feature 
vectors that represent the samples of both classes. It means that .∃ε > 0 such that: 

.wT xi + b ≥ ε (6.9) 

or 
.wT xi + b ≤ −ε. (6.10) 

In this case, we can demand to choose .w such that the constant on the right side 
of Eqs. 6.9 and 6.10 will be equal to 1. It is enough to multiply both sides of the 
inequalities by . 

1
ε
. If we take this assumption, we have the following: 

.wT xi + b ≥ 1 (6.11) 

and for the feature vectors that lie above the hyperplane, we assign the label .yi = 1. 
For feature vectors lying under the hyperplane: 

.wT xi + b ≤ −1 (6.12) 

we assign the label .yi = −1. Multiplying both sides of the above inequalities by . yi
we get 

.yi (w
T xi + b) ≥ 1. (6.13)
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Fig. 6.3 SVM hyperplane 
with margins 

Based on that for all closest positive and negative feature vectors the inequalities 
6.11 and 6.12 become 

.wT x1i + b = 1 (6.14) 

for positive feature vectors and 

.wT x−1
i + b = −1 (6.15) 

for negative feature vectors. The hyperplane margins are defined by the following 
equations: 

.wT x1i + b − 1 = 0 (6.16) 

and 
.wT x−1

i + b + 1 = 0. (6.17) 

We can draw it as shown in Fig. 6.3 where the dashed lines are the margin hyperplanes 
given with Eqs. 6.16 and 6.17. The goal of the SVM method is to find a hyperplane 
that divides the feature space with the biggest margin between support vectors. The 
support vectors are the elements in the feature space that are closest to the hyperplane. 
The black straight line is the hyperplane .g(x). The hyperplane presented as the 
straight black line is defined as follows: 

.ĝ(x) = wT x + w0 = 0. (6.18) 

The two dashed lines are the margins. The margines are built using the support 
vectors. Here is where the name of the method came from. The distance . d between 
them can be calculated by the difference of the distances .d1 and .d2 (dashed lines) 
where.d1 is the distance of the positive margin hyperplane from the origin (solid line) 
and.d2 is the distance of the negative margin hyperplane from the origin. Remember 
that these hyperplanes are parallel, so using Eq. 6.8 we get
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.d = |d1 − d2| = |b − 1

||w|| − b + 1

||w|| | = 2

||w|| . (6.19) 

It means that the maximum margin between the feature vectors we get when we 
maximize the expression.

2
||w|| or minimize the expression.

||w||
2 . However, sometimes 

it is more convenient to minimize the following: 

.
1

2
||w||2. (6.20) 

It is a quadratic optimization problem. We cannot forget about the constraints: 

.yi (w
T xi + b) − 1 ≥ 0, i = 1, . . . , n. (6.21) 

At this point, we could stop our considerations and we could calculate the values of 
. w and. b which minimize the formula 6.19. Next, we can easily classify a new object 
by calculating the value of .wT x + b and if it is greater than zero, we classify it as 
class 1 and as class . −1 in the opposite case. 

6.1 Lagrangian Multipliers 

In the previous chapter, we conclude that we have to solve a quadratic optimization 
problem with constraints to find an optimal separating hyperplane. What does it 
mean? Let us look at Fig. 6.4. On the left, we have to find the minimum of the 
function .x2 without any constraints. The solution is .x = 0, on the right we have the 
same minimization problem, but with constraints .x ≥ 1, now the answer changes, 
and the minimum of the function is.x = 1. This problem is very simple, as it contains 

Fig. 6.4 Example of the minimization problem of.x2 function
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only a function with one variable. A function with multiple variables is much more 
difficult to solve. Let us assume that we have to minimize the function. f (x) with the 
constraint .g(x) = 0, where . x might be a vector of variables .x = (x1, . . . , xn). We  
can notice that the minimum of the . f (x) is found when the gradients of these two 
functions are parallel, i.e., 

.∇ f (x) = α∇g(x), (6.22) 

where. α is the scaling factor, we call it the Lagrange multiplier. To find the minimum 
of . f under the constraint . g, we just need to solve the following: 

.∇ f (x) − α∇g(x) = 0. (6.23) 

To solve that equation, we can define a function .L(x, α) = f (x) − αg(x), then its 
gradient is .∇L(x, α) = ∇ f (x) − α∇g(x). Solving .∇L(x, α) = 0 allows us to find 
the minimum. The function .L(x, α) we call Lagrangian. 

Let us take an example to understand how it is used to solve the problem defined 
in Eqs. 6.23. Assume that we have to find the minimum function. f (x, y) = x2 + y2

under the constraint.g(x, y) = x + y − 1 = 0. In our case, the Lagrangian is defined 
as follows: 

. L(x, y, α) = x2 + y2 − α(x + y − 1).

Now, we have to calculate when the gradient of this function equals zero, which 
means solving the following system of equations: 

. 
∂

∂x
L(x, y, α) = 2x − α = 0

. 
∂

∂y
L(x, y, α) = 2y − α = 0

. 
∂

∂α
L(x, y, α) = −x − y + 1 = 0

We calculate the derivative of each variable in each equation separately. Finally, we 
get the answers as:.x = 1

2 , y = 1
2 and.α = 1. This means that the function. f (x, y) =

x2 + y2 has the minimum in . f ( 12 ,
1
2 ) = 1

4 + 1
4 = 1

2 .

Lagrangian multipliers for multiple constraints 

Lagrange multipliers also work with multiple constraints. We are just adding 
another boundary to the problem. When we deal with multiple constraints, then 
our Lagrangian becomes
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.L(x, α) = f (x) −
∑

i

αi gi (x), (6.24) 

where.gi (x) = 0 for.i = 1, . . . , n are the constraints. Notice that each constraint has 
its own Lagrange multiplier. The Lagrangian is equal to 0: 

.∇L(x, α) = 0. (6.25) 

Solving this case is not much different compared to a single constraint case. However, 
when we are looking for optimal hyperplanes, then our constraints are inequalities. 
The constraints are handled by the Lagrange multipliers, but the following equations 
should be met when dealing with the inequality constraints: 

. 
g(x) ≥ 0, then α ≥ 0

g(x) ≤ 0, then α ≤ 0

Example 1 (Lagrangian multipliers with two constraints) Let us take an example 
of a function with two constraints. The function is defined as follows: 

. f (x, y) = 2x2 − 3y2

and the constraints are defined as 

. g1(x, y) = x2 − 4 ≥ 0,

and 

. g2(x, y) = y + 1 ≥ 0.

Based on the previous example, we can set our Langrangian as 

. L(x, y, α1, α2) = 2x2 − 3y2 − α1(x
2 − 4) − α2(y − 1).

All derivatives should be zero and we get a system of equations as 

. 
∂

∂x
L(x, y, α) = 4x − 2xα1 = 0,

.
∂

∂y
L(x, y, α) = −6y − 2yα2 = 0,
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. 
∂

∂α1
L(x, y, α) = x2 − 4 = 0,

. 
∂

∂α2
L(x, y, α) = y + 1 = 0.

We also have additional constraints: 

. α1 ≥ 0,

α2 ≥ 0.

The above equations give as the values of .y, x, α1 and . α2: 

. y = −1,

x = 2,

α1 = 2,

α2 = 3.

Finally, we find that the minimum of the function . f (x, y) in .(−1, 2) is equal to: 

. f (x, y) = 2 · 22 − 3 · (−1) = 11.

To summarize this section, we have learned how to use Lagrangian multipliers to 
solve a function with more than one constraint. 

Applying multipliers to SVM 

Let us go back to our problem of maximizing the margin between the hyperplanes. 
We concluded that it is enough to find the minimum for the function: 

. f (w) = 1

2
||w||2, (6.26) 

with the constraints: 

.g(w, b) = yi (w
T xi + b) − 1 ≥ 0, i = 1, . . . , n. (6.27) 

As shown in the previous section, it can be solved by the Lagrangian multiplier 
method. This method allows us to formulate the so-called dual problem in which we 
can get rid of all the constraints. The dual problem is just a different way of solving 
the primal problem. Not to go much into the details, in case of Lagrangian multipliers 
to move to a dual problem, the Karush-Kuhn-Tucker conditions [ 6] need to be met.
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In other words, a solution of the dual problem is also the solution of our primal 
problem. In order to get the dual problem we introduce.αi > 0 Lagrange multipliers 
and add our constraints into the formula. So, now we get 

.L(w, b, α) = 1

2
||w||2 −

∑

i

αi (yi (w
T xi + b) − 1). (6.28) 

We can rewrite the above equation as follows: 

.L(w, b, α) = 1

2
||w||2 −

∑

i

αi yi (w
T xi + b) −

∑

i

αi . (6.29) 

We would like to find .w and . b that minimizes, and the .αi which maximizes our 
equation. We can do this by differentiating L(w;a) with respect to .w and . b and 
setting the derivatives to zero, that is 

.
δL(w, b, α)

δw
= w −

∑
αi yi xi = 0, (6.30) 

and 

.
δL(w, b, α)

δb
= −

∑
αi yi = 0, (6.31) 

which means 
.w =

∑
αi yi xi , (6.32) 

and 
.

∑
αi yi = 0. (6.33) 

We should also have 
.

∑
αi ((w0xi − b0)yi − 1) = 0. (6.34) 

We know that .
∑

αi yi = 0. If we replace .w and . b in 6.29 by 6.32 and 6.33 then we 
get 

.L =
∑

αi − 1

2
(
∑

αi yi xi )(
∑

αi yi xi ), (6.35) 

which is equivalent to: 

.L(α) =
∑

αi − 1

2

∑ ∑
αiα j yi y j x

T
i x j . (6.36) 

So finally our task is to find . α for which .L(α) is maximal, of course under the 
following constraints:
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.αi ≥ 0 i = 1, 2, . . . , n and
∑

αi yi = 0. (6.37) 

Assume that the vector .α0 = (α0
1, α

0
2, . . . , α

0
n) is the solution of our optimization 

problem with our constraints, then hyperplane is defined by .w0xT + b where 

.w0 =
∑

yiα
0
i xi , (6.38) 

summed over all support vectors, and 

.b0 = 1

2
(w0xi + w0x j ), (6.39) 

where .i �= j are two indices of the support vectors. Instead of using an arbitrary 
Support Vector . xs , it is better to take the average over all of the Support Vectors: 

.b0 = 1

Ns

∑
(ys −

∑
αi yi x

T
i xs). (6.40) 

It is time when we can formulate some conclusions. First, we see that if the vector 
is not a support vector, i.e., it is not lying on the margin then the corresponding 
Lagrange multiplier.αi must be zero. Second, we use only the support vectors to find 
the optimal solution for our problem, we need only the dot product of the support 
vectors. 

Finally, we are able to rewrite our decision function using the Lagrange multipliers 
and the support vectors as 

. f (x) = sign(
∑

yiα
0
i (x

T
i x) + b0). (6.41) 

The decision function is a sign function where the major part of the decision is made 
based on the weights. 

6.2 C-SVM 

The presented solution is very intuitive and it performs well, but only if a separating 
hyperplane exists, i.e., the problem is linearly separable. However, in many cases, 
there is no separate hyperplane and, therefore, the solution of the optimization prob-
lem has no solution with margin.d(h1, h2) > 0. However, in this section, we describe 
the concept of a semi-separating hyperplane which almost separates the classes (with 
some errors), using the so-called soft margins. 

Sometimes, the strict approach to maximization of the margin is not optimal. 
We see it in Fig. 6.5. The separation hyperplane exists, we can use our algorithm 
to maximize the margin, and we find the optimal separating hyperplane .h1 which 
separates all samples from both classes. However, if we look closer at the solution, 
we see that such a classifier is probably not a good solution. It will probably not
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Fig. 6.5 A hyperplane with small (a), big (b), and intermediate value of C 

generalize well. We would prefer the hyperplane. h2, which misclassifies one sample 
but allows us to find a hyperplane with a much larger margin. 

This example is very important to show that the pure maximum-margin classifier 
is very sensitive to single-outlying observations. We already see that every change 
of the support vector impacts the separating hyperplane but now see that if we add 
even an outlying sample, then our solution will change drastically and it can even 
become unseparable. The problem can be solved by allowing one to misclassify some 
training samples in order to achieve better accuracy in classifying the test samples. 

This approach is a soft margin approach. Rather than seeking the largest possible 
margin so that every observation is not only on the correct side of the hyperplane 
but also on the correct side of the margin, we instead allow some observations to be 
on the incorrect side of the margin, or even the incorrect side of the hyperplane. We 
call the margin soft because it can be violated by some of the training samples. An
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example is shown in Fig. 6.5a, b. Most of the observations are on the correct side of 
the margin. However, a small subset of the observations are on the wrong side of the 
margin. 

A sample can be not only on the wrong side of the margin, but also on the wrong 
side of the hyperplane. In fact, when there is no separate hyperplane, such a situation 
is inevitable. Observations on the wrong side of the hyperplane correspond to training 
observations that are misclassified by the support vector classifier. The right-hand 
panel of Figure XX illustrates such a scenario. 

How to describe this mathematically? We can modify the conditions 6.11 and 
6.12 which now became 

.wT xi + b ≤ −1 + ξi (6.42) 

and 
.yi (w

T xi + b) ≥ 1 − ξi , (6.43) 

where 
.ξi ≥ 0, i = 1, 2, . . . , n. (6.44) 

The. ξi are slack variables that allow some individual samples to be on the wrong side 
of the margin or the hyperplane. Well, but what are these slack variables? Generally, 
they tell us where the .i-th sample is in the feature space relative to the hyperplane 
we are looking for. Also, it tells us where this sample is relative to the margin. There 
are four possible cases: 

• .ξi = 0 the sample is on the correct side of the hyperplane and on the correct side 
of the margin, 

• .ξi > 0 and .ξi < 1 the sample is on the correct side of the hyperplane, but it lies 
inside the margin, 

• .ξi = 1 the sample lies just on the separation hyperplane, 
• .ξi > 1 the sample lies on the wrong side of the hyperplane. 

The second case does not cause a classification error when the third and fourth 
lead to misclassification. We can differ the approach to them, but it is more practical 
not to. Now, let us introduce an additional parameter. C , which will be the sum of all 
. ξi ’s, so it will determine the sum of violations in the margin and the hyperplane. It 
means that we will tolerate the total weight of the violations (but no more than . C), 
to find a better hyperplane, i.e., with a better margin. 

We can think of. C as a trade-off between the width of the margin and the cost of all 
the violations caused by the samples in . n. We can demand.C = 0, which means that 
we do not allow any sample from the training data set to be misclassified. However, 
we risk finding the solution with a very small margin, or even we will not be able 
to separate our samples. If we allow .C > 0, then we allow some samples to lie in 
the margin or even be misclassified, resulting in a wider margin or even making our 
problem separable. The higher the value of . C , we get a more general solution but 
at the cost of increasing the error rate. The choice of the value of .C is not a trivial 
problem; we will return to it later in this chapter.
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We have our modified conditions, and now the function which we should minimize 
becomes: 

.
1

2
||x ||2 + C

∑
ξi (6.45) 

with constraints 
.ξi ≥ 0 and

∑
ξi < C, C > 0 (6.46) 

As mentioned we can use Lagrangian multipliers and introduce the dual problem 
which becomes 

.L(α) =
∑

αi − 1

2

∑
αiα j yi y j (x

T
i + x j ) (6.47) 

with constraints: 

.C ≥ αi ≥ 0, i = 1, . . . , n and
∑

αi yi = 0 (6.48) 

We can also notice something very interesting. Using KKT conditions, we get the 
following: 

.αi = 0 ⇒ yi (w
T xi + b) ≥ 1 (6.49) 

.αi = C ⇒ yi (w
T xi + b) ≤ 1 (6.50) 

.0 < αi < C ⇒ yi (w
T xi + b) = 1 (6.51) 

Our new optimization problem has a very interesting property: it turns out that only 
those samples that either lie on the margin or violate the margin will affect the 
separating hyperplane. This means that samples that lie on the correct side of the 
margin do not affect our classifier. So, we change the classifier only if we add the 
sample that violates the margin! It also means that not only the samples that lie 
directly on the margin become the support vectors; now even the samples on the 
wrong side of the margin for their class become support vectors. 

The fact that only support vectors affect the classifier is quite understandable, 
and we see that C controls the trade-off between the margin and the bias caused by 
the misclassified samples. When the . C parameter is large, the margin is wide, many 
samples violate the margin, and so there are many support vectors. In this case, many 
samples are used to calculate the separating hyperplane. 

1 def  train  (  train_data_set  ,  train_labels  ,  kernel_type  =’  linear  ’,  C=10 ,  
threshold  =1e−5): 

2 kernel  =  build_kernel  (  train_data_set  ,  kernel_type  =  kernel_type  )  
3 

4 P  =  train_labels  ∗ train_labels  .  transpose  ()  ∗ kernel  
5 q =  −np.  ones  ((  objects_count  ,  1))  
6 G  =  np.  concatenate  ((  np.  eye  (  objects_count  ),  −np.  eye  (  objects_count  )))  
7 h  =  np.  concatenate  ((C  ∗ np.  ones  ((  objects_count  ,  1)),  np.  zeros  
8 ((  objects_count  ,  1))))  
9 

10 A  =  train_labels  .  reshape  (1  ,  objects_count  )  
11 A  =  A.  astype  (  float  )
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12 b  =  0.0  
13 

14 sol  =  cvxopt  .  solvers  .qp(  cvxopt  .  matrix  (P),  cvxopt  .  matrix  (q),  cvxopt  .  
matrix  (G),  cvxopt  .  matrix  (h),  cvxopt  .  matrix  (A),  cvxopt  .  matrix  (b))  

15 

16 lambdas  =  np.  array  (  sol  [  ’x’]) 
17 

18 support_vectors_id  =  np.  where  (  lambdas  >  threshold  )  [0]  
19 vector_number  =  len  (  support_vectors_id  )  
20 support_vectors  =  train_data_set  [  support_vectors_id  ,  :]  
21 

22 lambdas  =  lambdas  [  support_vectors_id  ]  
23 targets  =  train_labels  [  support_vectors_id  ]  
24 

25 b =  np.  sum  (  targets  )  
26 for  n in  range  (  vector_number  ):  
27 b −= np.  sum  (  lambdas  ∗ targets  ∗ np.  reshape  (  kernel  
28 [  support_vectors_id  [n],  support_vectors_id  ],  (  vector_number  ,  1)))  
29 b /=  len  (  lambdas  )  
30 

31 return  lambdas  ,  support_vectors  ,  support_vectors_id  ,  b,  targets  ,  
vector_number  

Listing 6.1 C-SVM training method 

In Listing 6.1 we have combined all the above and implemented the training part. 
We use the cvxopt library that is a linear programming library in Python. The n is the 
sample number, b is the bias as a .1 × 1 matrix, A is the . y vector, P is .H = X ′X ′T , 
G is a diagonal matrix of . −1s of size .m × m, h is a vector of size .1 × m, and . q is 
a vector of size .1 × n of . −1. The solver of the equations can be invoked as line 16. 
The . x values are saved in the lambdas. 

1 def  classify_linear  (  test_data_set  ,  train_data_set  ,  lambdas  ,  targets  ,  b,  
vector_number  ,  support_vectors  ,  support_vectors_id  ):  

2 kernel  =  build_kernel  (  train_data_set  )  
3 y  =  np.  zeros  ((  np.  shape  (  test_data_set  )[0]  ,  1))  
4 for  j in  range  (np.  shape  (  test_data_set  )  [0])  :  
5 for  i in  range  (  vector_number  ):  
6 y[j]  +=  lambdas  [i]  ∗ targets  [i]  ∗ kernel  [j,  i]  
7 y[j]  +=  b  
8 return  np.  sign  (y)  

Listing 6.2 Linear classification 

The SVM is by default a linear classifier. In Listing 6.2 we use the linear kernel 
that is defined as 

.K = XXT . (6.52) 

The linear kernel in many cases is not the best-performing kernel. To show it we 
prepared an example on a classical data set below. 

Example 2 (Iris classified using linear kernel C-SVM) This example is only used to 
show how to use C-SVM using one of the simplest kernels. In Listing 6.3 we show 
how to prepare the Iris data and choose only the objects of two classes. In lines 9–10 
we drop the object of class 2. What is more, the labels are changed from 0 and 1 to 
. −1 and 1, this is a requirement of the cvxopt library. 

1 from  sklearn  .  datasets  import  load_iris  
2 import  numpy  as  np  
3 from  sklearn  .  model_selection  import  train_test_split
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4 

5 iris  =  load_iris  ()  
6 data_set  =  iris  .  data  
7 labels  =  iris  .  target  
8 

9 data_set  =  data_set  [  labels  !=2]  
10 labels  =  labels  [  labels  !=2]  
11 

12 train_data_set  ,  test_data_set  ,  train_labels  ,  test_labels  =  
train_test_split  (  data_set  ,  labels  ,  test_size  =0.2 ,  random_state  =15)  

13 

14 train_labels  [  train_labels  <1]  =  −1 
15 test_labels  [  test_labels  <1]  =  −1 
16 

17 objects_count  =  len  (  train_labels  )  
18 

19 lambdas  ,  support_vectors  ,  support_vectors_id  ,  b,  targets  ,  vector_number  =  
train  (  train_data_set  ,  train_labels  ,  kernel_type  =’  linear  ’) 

20 predicted  =  classify_linear  (  test_data_set  ,  train_data_set  ,  lambdas  ,  
targets  ,  b,  vector_number  ,  support_vectors  ,  support_vectors_id  )  

21 predicted  =  list  (  predicted  .  astype  (  int  ))  

Listing 6.3 Invoke the main SVM prediction method 

The predicted values are then converted into an integer with a value of . −1 or 1.  

6.3 .ν-SVM 

The soft margin classifier is a very flexible approach, allowing us to soften the criteria 
of separating hyperplanes. We see that the higher the value of . C , the more support 
vectors we have. However, we have no direct influence on this number. So we can 
propose another realization of the soft margins called .ν-parameterization [ 7]. The 
parameter .C is replaced by a parameter .ν ∈ [0, 1], which is the lower and upper 
bound of the number of examples that are support vectors and are on the wrong side 
of the hyperplane. 

The primal problem in this approach will be formulated as follows: 

.
1

2
||w||2 − νρ + 1

2

∑
ξi (6.53) 

subject to: 

.yi (w
T xi ) + b ≥ ρ − ξi , i = 1, . . . , n, and ξi ≥ 0, ρ ≥ 0 (6.54) 

Now, we have no constant .C appearing in the formula. It has been replaced by 
a parameter . ν and an additional variable . ρ to optimize. Note that for .ξi = 0 our 
constraint states that the two classes are separated by a margin equal to .

2ρ
||w|| . 

To explain what is the parameter . ν, let us introduce the term margin error . R. We  
denote training points by.ξi > 0 as the points that are errors or are within the margin. 
Formally, the fraction of margin errors is the following:
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.Rρ(w, b) = 1

n
|{i |yi (wT xi + b) < ρ}|. (6.55) 

Now, let us assume that we run.ν-SVM with kernel function. k; on some data and 
we get some.ρ > 0, then: 

• . ν is an upper bound of the fraction of margin errors, and hence also on the fraction 
of training errors, 

• . ν is a lower bound on the fraction of support vectors. 

Let us examine the dual problem for the .ν-SVM algorithm. Our Lagrangian will 
be in the form: 

. L = 1

2
||w||2 − νρ + 1

n

∑
ξi −

∑
(αi (yi (w

T xi + b) − ρ + ξi ) + βiξi = δρ),

(6.56) 
where .αi , βi , δ are the multipliers. If we compute the partial derivatives from the 
KKT conditions and set them to 0 we obtain the following conditions: 

.w =
∑

αi yi xi , (6.57) 

.αi + βi = 1

n
, (6.58) 

.

∑
αi yi = 0, (6.59) 

.

∑
αi − δ = ν. (6.60) 

Substituting above into L; using .αi , βi , δ and incorporating kernels for dot prod-
ucts leaves us with the following quadratic optimization problem for .nu-SVM clas-
sification: 

.L(α) = −1

2

∑ ∑
αiα j yi y j k(xi , x j ), (6.61) 

subject to: 
.0 ≤ αi ≤ 1/n (6.62) 

.

∑
αi yi = 0 (6.63) 

.

∑
αi ≥ ν (6.64) 

As above, the resulting decision function can be shown to take the form: 

. f (x) = sign(
∑

αi yi k(x, xi ) + b) (6.65)
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Compared to the C-SVM dual problem, there are two differences. First, there is an 
additional constraint. Second, the linear term.

∑
αi no longer appears in the objective 

function. This has an interesting consequence: it is straightforward to verify that the 
same decision function is obtained if we start with the primal function: 

.
1

2
||w||2 + C(−νρ + 1/n

∑
ξi ). (6.66) 

In this, we see the connection between C and . ν. 
A connection to standard SVM classification and a somewhat surprising inter-

pretation of the regularization parameter C is described by the following result. If 
.ν-SVM classification leads to .ρ > 0 then C-SVM classification, with C set a priori 
to .

1
nρ leads to the same decision function. 

6.4 Non-linearly Separable Problems 

The proposed solution is much better and allows us to solve many more problems. We 
do not demand that the problem be strictly linearly separable. Using the parameter 
. C , we can loosen up the rules to find a better solution. However, in practice, we 
sometimes have problems that are completely non-linear. For instance, consider the 
feature space presented in Fig. 6.6a. It is clear that it is not linearly separable. If we 
try to use our first approach, we will not find any separating hyperplane. No matter 
what the value of . C is, the separation hyperplane will not improve. 

The problem is that we are looking for a linear boundary when the boundary in 
our space is non-linear. However, it does not mean that there is no space in which 
this problem has no linear boundary. If we find the mapping to such a space, the 
problem can be solved. Let us consider a very simple example in .R2. Assume that 

Fig. 6.6 Kernel trick
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we have 4 training samples: .(−1,−1), (1, 1) representing class .−1 and .(−1, 1), 
.1,−1) representing class. 1. It is a typical XOR problem that is not linearly separable 
in .R2. 

The question is if we can map the feature space into more dimensions in such a 
way that the problem can be linearly separable. It is quite obvious that if we use the 
function: 

.
(x) = (x21 ,
√

(2)x1x2, x
2
2 ) (6.67) 

we transfer our problem into .R3 space in which it is linearly separable. It is visible 
because our training points in .R2 become: .
(−1,−1) = (1,

√
(2), 1), . 
(1, 1) =

(1,
√

(2), 1) and .
(−1, 1) = (1,−√
(2), 1), .
(1,−1) = (1,−√

(2), 1). It seems 
troublesome to search for such a space and move each vector into it. In particular, 
this space can be much more dimensional. However, if we look at 1.30 we see that all 
we need to calculate is the dot product between .
(xi )
(x j ) = (xi x j )

2 in our case. 
This means that we do not have to calculate .
(x), we also do not have to know 

the form of the.
(x), what we really need is to know how to calculate the dot product 
in the new space. In fact, if we define the dot product as .
(xi )
(x j ) = (xi x j )

2 then 
the.
(x) is not unique. It can also be defined as.
(x) = (x11 , x1x2, x1x2, x

2
2 ) , which 

means that we are in the .R4 space. 
Every time the inner product appears in the formula 1.30, or in a calculation of 

the decision function so we can replace it with a generalization of the inner product 
of the form 

.K (xi , x j ) =
∑


(xi )
(x j ) (6.68) 

.K is the function that we will refer to as a kernel. A kernel is a kernel function that 
quantifies the similarity of two samples. For instance, we could simply take 

.K (xi , x j ) =
∑

xik x jk (6.69) 

It just gives us the normal support vector classifier in which we stay in the feature 
space. It is known as a linear kernel because the support vector classifier is linear in 
the features. Generally, the linear kernel essentially quantifies the similarity of a pair 
of observations using Pearson correlation. 

However, we can take the kernel function as follows: 

.K (xi , x j ) = (
∑

xik x jk + a)d . (6.70) 

It is a polynomial kernel of degree . d, where . d is a positive integer. Using such 
a kernel with .d > 1, instead of the standard linear kernel, leads to a much more 
flexible decision boundary. Basically, it amounts to fitting a support vector classifier 
in a higher dimensional space involving polynomials of degree . d, rather than in 
the original feature space. When the support vector classifier is combined with a 
non-linear kernel, the decision function is non-linear and has the form:
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. f (x) = β0 +
∑

αi K (x, xi ). (6.71) 

Another popular choice is the radial kernel, which takes the form: 

.K (xi , x j ) = exp(−γ ||xi − x j ||2). (6.72) 

Using this kernel, we go to the infinite-dimensional feature space. It would not be 
very easy to work with .
(x) explicitly. However, if we replace .xi x j by . K (xi , x j )

everywhere in the training algorithm, the algorithm will get a support vector machine 
which lives in an infinite-dimensional space and will do so in roughly the same 
amount of time as it would take to train on the unmapped data. The four most 
popular kernel functions are: 

• the linear kernel, 
• the polynomial kernel, defined as 

.(γ · 〈xi , x j 〉 + r)d , (6.73) 

• the radial basis function (RBF) kernel, defined as 

. exp(−γ · |xi − x j |2), (6.74) 

• the sigmoid kernel, defined as 

. tanh(〈(xi , x j 〉 + r). (6.75) 

We have one big advantage of using kernel rather than simply enlarging the feature 
space using functions of the original features. One advantage is computational, which 
is equivalent to the fact that, using kernels, one only needs to compute.K (xi , x j ) for 
all .n(n − 1) pairs of . i and . j . This can be done without explicitly working in the 
enlarged feature space. This is important because in many applications of SVMs, the 
enlarged feature space is so large that computations are intractable. For some kernels, 
such as the radial kernel, the feature space is implicit and infinite dimensional, so we 
could never do the computations there anyway! 

Example 3 (SVM Radial Basis Function (RBF) kernel used on the Iris data set) The 
previous example performs rather poorly. To make the prediction more successful, 
we use a more sophisticated kernel. One of such a scheme is the RBF kernel. In 
Listing 6.4, we implement Eq. 6.74. 

1 def  build_kernel  (  data_set  ,  kernel_type  =’  linear  ’):  
2 kernel  =  np.  dot  (  data_set  ,  data_set  .T)  
3 if kernel_type  ==  ’rbf  ’: 
4 sigma  =  1.0  
5 objects_count  =  len  (  data_set  )  
6 b  =  np.  ones  ((  len  (  data_set  ),  1))  
7 kernel  −=  0.5  ∗ (np.  dot  ((  np.  diag  (  kernel  )∗np.  ones  ((1  ,  objects_count  

))).T,  b.T)  
8 +  np.  dot  (b,  (np.  diag  (  kernel  )  ∗ np.  ones
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9 ((1  ,  objects_count  ))).T.T))  
10 kernel  =  np.  exp  (  kernel  /  (2.  ∗ sigma  ∗∗ 2)) 
11 return  kernel  

Listing 6.4 RBF kernel implementation 

The implementation of the classification method is slightly different and needs to 
be adjusted to use the RBF to predict the label. 

1 def  classify_rbf  (  test_data_set  ,  train_data_set  ,  lambdas  ,  targets  ,  b,  
vector_number  ,  support_vectors  ,  support_vectors_id  ):  

2 kernel  =  np.  dot  (  test_data_set  ,  support_vectors  .T)  
3 sigma  =  1.0  
4 c  =  (1.  /  sigma  ∗ np. sum  (  test_data_set  ∗∗ 2,  axis  =1)  ∗ np.  ones  ((1  ,  np.  

shape  (  test_data_set  )  [0])  )).T  
5 c  =  np.  dot  (c,  np.  ones  ((1  ,  np.  shape  (  kernel  )  [1])  ))  
6 sv  =  (np.  diag  (np.  dot  (  train_data_set  ,  train_data_set  .T))∗ np.  ones  ((1  ,  len  

(  train_data_set  )))).T[  support_vectors_id  ]  
7 aa  =  np.  dot  (sv  ,np.  ones  ((1  ,  np.  shape  (  kernel  )  [0])  )).T  
8 kernel  =  kernel  − 0.5  ∗ c − 0.5  ∗ aa 
9 kernel  =  np.  exp  (  kernel  /  (2.  ∗ sigma  ∗∗ 2)) 

10 

11 y  =  np.  zeros  ((  np.  shape  (  test_data_set  )[0]  ,  1))  
12 for  j in  range  (np.  shape  (  test_data_set  )  [0])  :  
13 for  i in  range  (  vector_number  ):  
14 y[j]  +=  lambdas  [i]  ∗ targets  [i]  ∗ kernel  [j,  i]  
15 y[j]  +=  b  
16 return  np.  sign  (y)  

Listing 6.5 Implementation of C-SVM for the RBF kernel 

The execution is done in the same way as in the linear example. The accuracy is 
significantly higher and easily achieved 85%. 

6.5 Extensions 

So far, our discussion has been limited to the case of binary classification, that is, 
classification in the two-class setting. How can we extend SVMs to the more general 
case where we have some arbitrary number of classes? It turns out that the concept 
of separating hyperplanes upon which SVMs are based does not lend itself naturally 
to more than two classes. Although a number of proposals for extending SVMs to 
the K-class case have been made, the two most popular are the one-versus-one and 
one-versus-all approaches. We briefly discuss those two approaches here. 

One class SVM 

In the previous section, we addressed multiclass problems which seem to be typical 
for most real-world problems. However, sometimes we are interested in one class 
only. We just want to separate the samples from all the others. It seems like a typical 
two-class problem (in fact, we even use such an approach in the one-versus-all 
strategy). However, what happens when we have training samples that represent one
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Fig. 6.7 One class example. 
The classified one class 
examples are marked with 
red and outfittery cases with 
blue 

class only? Can we train a classifier that learns to recognize the samples in this class 
and which will reject all others? 

The basic idea is to enclose the data with a hypersphere and classify the new data 
as normal if they fall within the hypersphere and otherwise as anomalous data (see 
Fig. 6.7). 

Let us assume that we have a training data set . T with samples . T = {x1, x2, . . . ,
.xn} ∈ Rp and let . r be the radius of the hypersphere and .c ∈ Rp be the center of this 
hypersphere. To find the minimum enclosing the hypersphere, we have to minimize 
.r2 subject to: 

.||
(xi ) − c||2 ≤ r2, i = 1, . . . , p (6.76) 

Then we introduce the Lagrangian multiplier for each constraint and obtain 

.L (̧, r, α) = r2 +
∑

αi (||
(xi ) − c||2 − r2), αi ≥ 0 (6.77) 

As we remember from the previous section, both derivatives must be equal to zero 
so 

.
δL(c, r, α)

δc
= 2

∑
αi (
(xi ) − c) = 0 (6.78) 

and 

.
δL(c, r, α)

δr
= 2r(1 −

∑
αi ) = 0 (6.79) 

from above we get 
.

∑
αi ) = 1 and c =

∑
αi
(xi ). (6.80)
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according to that we get the dual form: 

.W (α) =
∑

αi )||
(xi ) − c||2 =
∑

αi k(xi , xi ) −
∑ ∑

αiα j k(xi , x j ) (6.81) 

Therefore, we have to maximize .W (α) subject to: 

.

∑
αi ) = 1, i = 1, . . . , p (6.82) 

Similarly as in standard two-class SVM.αi > 0 only if the corresponding sample . xi
lies on the separating hypersphere. Now, if we look at the decision function, it has 
the following form: 

. f (x) = sign(r2 − ||
(x) − c||2), (6.83) 

and finally we get 

. f (x) = sign(r2 − (k(x, x) − 2
∑

αi k(x, xi ) +
∑ ∑

αiα j k(xi , x j )). (6.84) 

If we have some noise in our training set, the hard enclosing hypersphere approach 
may force a larger radius than should really be needed. In other words, the solution 
would not be robust. 

Our goal now is to find the minimum enclosing hypersphere that contains (almost) 
all training examples, but not some small portion of extreme training examples. 

We can use the same trick with the soft margins as with the hyperplane, so we 
introduce slack variables .ξi > 0, .i = 1, . . . , p and we have to minimize 

.r2 + C
∑

ξi (6.85) 

subject to 
.||
(xi ) − c||2 ≤ r2 + ξi , ξi > 0, i = 1, . . . , p (6.86) 

which finally leads to minimizing: 

.

∑ ∑
αiα j K (xi , x j ) −

∑
αi k(xi , xi ) (6.87) 

subject to 
.0 ≤ αi ≤ C,

∑
αi = 1. (6.88) 

One-Versus-One and One-Versus-All Classification 

Suppose that we would like to perform classification using SVMs, and there are 
.K > 2 classes. A one-versus-one or all-pair approach constructs. K∗(K−1)

2 SVMs, each 
of which compares a pair of classes. For example, such an SVM might compare the
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.k-th class, coded as. +1, to the.k-th class, coded as. −1. We classify a test observation 
using each of the. K∗(K−1)

2 classifiers and tally the number of times the test observation 
is assigned to each of the K classes. The final classification is performed by assigning 
the test observation to the class to which it was assigned the most frequently in these 
pairwise classifications. 

The one-versus-all approach is an alternative procedure for applying SVMs one-
versus in the case of .k > 2 classes. We fit the . k SVMs, each time comparing one of 
all K classes with the remaining .k − 1 classes. 

For Further Reading 

1. Christmann A, Steinwart I (2008) Support vector machines. Springer 
2. Campbell C, Ying Y (2011) Learning with support vector machines. Springer 
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Chapter 7 
Ensemble Methods 

Ensemble methods are also known as combined classifiers and are a group of methods 
that combine more than just one classifier to get better results than each classifier 
on its own. The classifiers are built on the same data sets. Depending on the way an 
ensemble method is built, we have a few major types: 

• boosting, 
• bagging, 
• stacking. 

A comparison of one classifier against many classifiers is given in Fig. 7.1. 
As shown in the figure, collecting many poor classifiers into one ensemble clas-

sifier can result in a classifier that performs well. A general formula of ensemble 
methods looks like following: 

.C̄(X) =
T∑

i=1

wiCi (X). (7.1) 

It’s important to mention that combining identical classifiers is useless, because 
same classifier will result with same boundaries. By same classifier we mean not 
exactly the same classification method, but the model that is trained using the same 
classification method, parameters, and exact training data. In other words, we need 
many low-quality classifiers and a way to combine them together, so we get a classifier 
that perform very well. In a classification problem, the low-quality classifiers needs 
to be better than guessing. It means that for a binary classification problem we should 
achieve more than 50%. 

In this part, we cover the most popular types of ensemble methods and include 
the implementations of random forest. XGBoost is another bagging method that is a 
popular Kaggle winning method. In this chapter, we explain the method in details. 
We cover also AdaBoost that is a bagging method and grading that is a stacking 
methods. 
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Fig. 7.1 Each classifier 
discriminant boundary is 
marked with black. Only 
together we can distinguish 
between the red and blue 
objects fully 

Boosting methods [ 1] take a different weighting schema of resampling than bag-
ging. The component classifiers are built sequentially, and examples that are misclas-
sified by previous components are chosen more often than those that are correctly 
classified. New classifiers are influenced by performance of previously built ones. 
The new classifier is encouraged to become an expert for instances classified incor-
rectly by the earlier classifier. There are few methods of boosting type: 

• AdaBoost, 
• Arcing, 
• RegionBoost, 
• Stumping. 

The differences are minor and most boosting methods are a modification of AdaBoost. 
Stumping differs from other ones, because it is used in decision trees. RegionBoost 
uses the kNN method as a part of the algorithm. 

7.1 AdaBoost 

AdaBoost [ 2] is the most popular boosting method and stands for adaptive boost. We 
use the weights to set the importance of the objects. The more important an object 
is, the more frequently it is chosen in the training data set. The method consists of 
the following steps: 

1. initialize weights to . 
1
N , where .N is the number of data points, 

2. loop steps below until 

.εt <
1

2
(7.2) 

or maximum number of iteration is reached, 
3. train classifier on .S, w(t) and get a hypothesis .ht (xn) for datapoints . xn ,
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4. compute error 

.εt =
N∑

n=1

w(t)
n I (yn �= ht (xn)), (7.3) 

5. set 

.αt = log(
1 − εt

εt
), (7.4) 

6. update weights: 

.w(t+1)
n = w(t)

n expαt I (yn �= ht (xn))

Zt
, (7.5) 

where .Zt is a normalization constant, 
7. output 

. f (X) = sign(
T∑

t=1

αt ht (x)). (7.6) 

The weights are set in each loop, where in each loop, we add a new classifier with 
the current weights and data set. It can be drawn as in Fig. 7.2. We use  the same  
data set example as for decision trees. In the first step, we have the data set with 
similar weights. Based on the prediction of the first model, we know what objects 
are misclassified. In the second step, the weights are higher for the misclassified 
ones. In the Fig. 7.2, we see it as bigger objects. In the first iterations, we will have 
more of such objects, and during the next iterations, the number of objects that are 
misclassified should decrease. 

Fig. 7.2 Two first steps of AdaBoost method



192 7 Ensemble Methods

The implementation consists of five methods. We use a decision tree method 
scikit-learn implementation for the training. It is easy to train with the fit method, 
most scikit-learn classifiers are trained with the fit. It makes usage a bit simpler. 
In Listing 7.1, an example of a decision tree training using a set of weights is shown. 

1 def  train_model  (  classifier  ,  weights  ):  
2 return  classifier  .  fit  (X=  test_set  ,  y=  test_labels  ,  sample_weight  =  weights  

) 

Listing 7.1 Model training 

The error calculation is based on the output of the predict method that is next 
used to calculate the error rate (7.3). It uses the weights and the accuracy vector that 
checks the returns the predictions test vector. The vector consists of binary values: 0 
for a positive prediction and 1 if the classifier did not correctly predict the label. 

1 def  calculate_accuracy_vector  (  predicted  ,  labels  ):  
2 result  =  []  
3 for  i in  range  ( len  (  predicted  )):  
4 if predicted  [i]  ==  labels  [i]:  
5 result  .  append  (0)  
6 else  : 
7 result  .  append  (1)  
8 return  result  
9 

10 def  calculate_error  (  weights  ,  model  ):  
11 predicted  =  model  .  predict  (  test_set  )  
12 return  np.  dot  (  weights  ,  calculate_accuracy_vector  (  predicted  ,  test_labels  

))  

Listing 7.2 Error rate calculation 

The calculate_accuracy_vector() method loops over the predicted 
labels and compares it to the test labels. The variable . α uses the error rate (lines 
1–2, and 4). 

The new weights are the most important part of the algorithm. We used the old 
weights and adjusted them and changed the weight value of the wrong-predicted 
objects. In the second line of the Listing 7.3, we get the fraction counter of the 
Eq. 7.5. 

1 def  set_alpha  (  error_rate  ):  
2 return  np.  log((1− error_rate  )/  error_rate  )  
3 

4 def  set_new_weights  (  old_weights  ,  alpha ,  model  ):  
5 new_weights  =  old_weights  ∗ np.  exp  (np.  multiply  (  alpha ,  

calculate_accuracy_vector  (  model  .  predict  (  test_set  ),  test_labels  )))  
6 Zt = np.  sum  (  new_weights  )  
7 return  new_weights  /  Zt  

Listing 7.3 New weights calculation function 

We save the alphas and models that are used during the training to compare how 
it changed. After the weights are changed, the new prediction can be performed. In 
the following example, we show how it works on the classic wine data set. 

Example 1 (Boosting the wine) In the first step, we load the data set from the scikit-
learn data sets library as shown in Listing 7.4. The set is then divided into training 
and testing sets by choosing 140 random objects from the set.
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1 from  sklearn  .  datasets  import  load_wine  
2 import  numpy  as  np  
3 from  sklearn  .  model_selection  import  train_test_split  
4 from  sklearn  .  tree  import  DecisionTreeClassifier  
5 

6 wine  =  load_wine  ()  
7 random_objects  =  np.  random  .  randint  (0  ,  178  ,  size  =140)  
8 data_set  =  wine  .  data  [  random_objects  ]  
9 labels  =  wine  .  target  [  random_objects  ]  

10 

11 train_set  ,  test_set  ,  train_labels  ,  test_labels  =  train_test_split  (  data_set  
,  labels  ,  test_size  =0.5 ,  random_state  =42)  

Listing 7.4 Adaboost prediction of wine dataset 

In the next step, we run the classifier and iterate by adjusting the weights. The 
implementation is shown in the Listing 7.5. First, the model is trained with the same 
weights for each object, next the error rate is calculated. Based on the error rate, the 
new weights are calculated. The ones that were misclassified get a higher weight. 

1 classifier  .  fit  (X=  train_set  ,  y=  train_labels  )  
2 alphas  =  []  
3 classifiers  =  []  
4 for  iteration  in  range  (  number_of_iterations  ):  
5 model  =  train_model  (  classifier  ,  weights  )  
6 error_rate  =  calculate_error  (  weights  ,  model  )  
7 alpha  =  set_alpha  (  error_rate  )  
8 weights  =  set_new_weights  (  weights  ,  alpha  ,  model  )  
9 alphas  .  append  (  alpha  )  

10 classifiers  .  append  (  model  )  

Listing 7.5 Adaboost weights adjustment 

Finally, we get a classifier that achieves better results. The weights of the data set 
before and after the weight changes are shown in Fig. 7.3. We can see that objects 
in some areas are harder to assign to the proper class. The plot is two-dimensional 
even if there are more features in the data set. 

Fig. 7.3 Wine classification of testing set (a) and weighted testing set (b)
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Other boosting methods 

Arcing is a modified AdaBoost, it differs how it calculates the error: 

.ε(t+1)(i) = (1 + ∑N
n=1 I (yn �= ht (xn)))

Zt
. (7.7) 

We use the normalization constant.Zt to obtain a probability density. Finally, we vote 
for the label: 

. f (X) = argmax
i

T∑

i

( fi (X) = y). (7.8) 

The arcing weight function can be implemented similarly to the AdaBoost weight 
function (Listing 7.6). 

1 def  set_new_weights  (  model  ):  
2 new_weights  =  (np.  add  (1  ,  calculate_accuracy_vector  (  model  .  predict  
3 (  test_set  ),  test_labels  )))/(  np.  sum  (np.  add  (1  ,  calculate_accuracy_vector  
4 (  model  .  predict  (  test_set  ),  test_labels  ))))  
5 return  new_weights  

Listing 7.6 Arcing weights calculation function 

The voting is slightly different compared to the classic AdaBoost method and can 
be implemented as in Listing 7.7). 

1 def  get_prediction  (x):  
2 predictions  =  []  
3 for  i in  range  ( len  (  classifiers  )):  
4 predicted  =  classifiers  [i].  predict  (x)  
5 predictions  .  append  (  predicted  )  
6 return  predictions  [np.  argmax  (  predictions  )]  

Listing 7.7 Arcing prediction with voting 

RegionBoost is another modification of AdaBoost. The difference is that the 
weights of each object depends locally on the importance of other . k closest neigh-
borhood objects: 

.wi (xi ) = 1

T

T∑

i=1

kN N (K ,Ci , xi , yi ), (7.9) 

where 

.kN N (K ,Ci , xi , yi ) = 1

K
[

∑

xs∈N (K ,X)

I ( f (xs = ys))]. (7.10) 

Stumping is a type of boosting that is applied to trees. A stump of a tree is a piece 
of tine that is left over when you cut the rest. Stumping consists of simply taking the 
root of the tree and using that as the decision maker. For each classifier, you use the 
very first question that makes up the root of the tree, and that is it.
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7.2 Bagging 

Bagging [ 3] is a short name for bootstrap aggregation. Generate individual classifiers 
on bootstrap samples of the training set. A bootstrap sample is a sample of the training 
set taken from the original data set with replacement, so that we may get some data 
several times and others not at all. The bootstrap sample is the same size as the 
original data set. Bagging traditionally uses component classifiers of the same type 
and combines prediction by a simple majority vote across. The steps of a bagging 
algorithm are as follows: 

1. create . T bootstrap samples . Si , 
2. for each sample .Si train a classifier, 
3. vote: 

. f (x) = argmax
T∑

i

( fi (X) = y). (7.11) 

The voting part chooses the most common label among the models. It is a good 
practice to have an odd value of models for binary decision problems. The approach 
can be drawn as shown in Fig. 7.4. We have  .T bootstrap sets (.ST ) used to train . T
models (.CT ) using the same method. As each model is trained on different sets, it 
differs from other models. A popular example of a bagging method is the random 
forest method [ 4]. The general bagging steps can be specified for the random forest 
method as follows: 

Fig. 7.4 General overview of the bagging method steps
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1. for each tree of . N , we create a new bootstrap data set and train it, 
2. at each node of the decision tree, randomly select .m features and compute the 

information gain only on that set of features, selecting the optimal one, 
3. repeat until the tree is complete. 

All steps should be clear, as we have already covered the decision trees in the previous 
chapter. A simplified random forest method can be implemented with only four 
functions. The ensemble methods are complex enough that simple examples as used 
in the beginning of this book are not complex enough for testing purposes. That is 
why, for this example, we used one of the classic data sets called Iris. It consists of 
three types of iris flowers. 

In the following example, we use the random forest method. It is a bagging method 
that, as a classification method, uses the decision tree. Instead of implementing 
the tree from scratch, as we did in the previous chapter, we use the scikit-learn 
implementation of it (Listing 7.8). 

1 from  sklearn  import  tree  
2 import  numpy  as  np  
3 from  sklearn  .  metrics  import  accuracy_score  
4 

5 decision_tree  =  tree  .  DecisionTreeClassifier  ()  

Listing 7.8 Libraries import for bagging method 

The crucial part of the bagging method is the setup of bootstrap sets. Each set 
can be chosen randomly using the random.random NumPy method. It can be 
implemented as in the Listing 7.9. 

1 def  create_bootstrap_data  ():  
2 bootstrap_ids  =  np.  random  .  randint  (0  ,  len  (  data_set  ),  size  =  len  (  data_set  )  

) 
3 return  data_set  [  bootstrap_ids  ,:]  ,  labels  [  bootstrap_ids  ]  

Listing 7.9 Bootstrap set generation method 

We have divided the implementation of the models into two separate methods. In 
the build_classifier method, we build just one instance of a model built using 
a bootstrap set. In the next method, we combine each model into a list of models. 
In each loop, we create a new bootstrap set, then use it to train a new model, and 
finally add it to the list. The implementation is shown in the Listing 7.10. The method 
implemented is also known as the random forest. 

1 def  build_classifier  (  data_set  ,  labels  ):  
2 decision_tree  =  tree  .  DecisionTreeClassifier  ()  
3 decision_tree  .  fit  (  data_set  ,  labels  )  
4 return  decision_tree  
5 

6 def  build_classifiers  (  cases  ):  
7 classifiers  =  []  
8 for  case  in  range  (  cases  ):  
9 bootstrap_set  ,  bootstrap_labels  =  create_bootstrap_data  ()  

10 classifier  =  build_classifier  (  bootstrap_set  ,  bootstrap_labels  )  
11 classifiers  .  append  (  classifier  )  
12 return  classifiers  

Listing 7.10 Bagging classifiers preparation and combination method
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The remaining voting method can be implemented as two loops: one that receives 
the classifier output, and the second counts the prediction by label and returns the 
most predicted label. The implementation is given in Listing 7.11. 

1 def  vote  (  classifiers  ,  test_data  ):  
2 output  =  []  
3 for  classifier  in  classifiers  :  
4 output  .  append  (  classifier  .  predict  (  test_data  ))  
5 output  =  np.  array  (  output  )  
6 predicted  =  []  
7 for  i in  range  ( len  (  test_data  )):  
8 classified  =  output  [:  ,  i]  
9 counts  =  np.  bincount  (  classified  )  

10 predicted  .  append  (np.  argmax  (  counts  ))  
11 return  predicted  

Listing 7.11 Bagging voting method 

Finally, we can check the results based on ten classifiers by running the code as 
given in Listing 7.12. The last line calculates the accuracy of the model. 

1 classifiers  =  build_classifiers  (10)  
2 predicted  =  vote  (  classifiers  ,  test_data_set  )  
3 accuracy  =  accuracy_score  (  test_labels  ,  predicted  )  

Listing 7.12 Bagging method executing 

Now, we can compare the ensemble method with a typical decision tree. We will 
use the same data set, but we modify the tree a bit as the overall challenge for a tree 
in these cases is not high. We limit the tree depth to 2 for both the ensemble models 
and the decision tree with which we will compare. 

Example 2 (Random forest on flowers) The random forest is just a group of decision 
trees fed with different training sets that work as a bagging ensemble method. It 
usually works better than a single decision tree. In Listing 7.13, an example of a 
single decision tree is shown. It uses a bootstrap set similarly to the random forest 
trees. 

1 tree_data_set  ,  tree_labels  =  create_bootstrap_data  (  train_set  ,  train_labels  
) 

2 decision_tree  =  tree  .  DecisionTreeClassifier  (  max_depth  =3)  
3 decision_tree  .  fit  (  tree_data_set  ,  tree_labels  )  
4 predicted  =  decision_tree  .  predict  (  test_set  )  
5 accuracy  =  accuracy_score  (  test_labels  ,  predicted  )  
6 print  (  accuracy  )  

Listing 7.13 Iris single decision tree classifier 

In Listing 7.14, we use the same data set as in the single tree, but we create a few 
bootstrap sets to train the same number of trees as sets. The classical Iris data set is 
part of the scikit-learn data set. The bootstrap sets are created within the classifier 
training method (Listing 7.10). 

1 from  sklearn  .  datasets  import  load_iris  
2 from  sklearn  .  model_selection  import  train_test_split  
3 

4 iris  =  load_iris  ()  
5 

6 random_objects  =  np.  random  .  randint  (0  ,  130  ,  size  =120)  
7 data_set  =  iris  .  data  [  random_objects  ]  
8 labels  =  iris  .  target  [  random_objects  ]
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Fig. 7.5 Iris classification using a decision tree (a) and random forest (b). Cases with black square 
border are the ones that were misclassified 

9 

10 train_set  ,  test_set  ,  train_labels  ,  test_labels  =  train_test_split  (  data_set  
,  labels  ,  test_size  =0.5 ,  random_state  =42)  

11 

12 classifiers  =  build_classifiers  (5  ,  train_set  ,  train_labels  )  
13 predicted  =  vote  (  classifiers  ,  test_set  )  
14 accuracy  =  accuracy_score  (  test_labels  ,  predicted  )  
15 print  (  accuracy  )  

Listing 7.14 Iris bagging (random forest) classification example 

The final classification result is shown in Fig. 7.5. The misclassified objects are 
marked with a black boundary. On the left side, there are five objects that are mis-
classified when only one decision tree is used. On the other side, we have only two 
such cases. Here the random forest of five trees is used. 

7.3 Stacking 

Stacking as is can be deduced from the name of this ensemble method, is a method 
that uses different classifiers and builds these into a stack. Usually, in the stacking 
method, the models used for classification are architecturally different, as the input 
data set is the same for each method at the first level of the stack. The second level 
of the stack is a set of the predictions for each model in the first level. The third stack 
level is built from one meta-classifier that uses the validation set (second level) and 
based on that the final prediction is made. An overview of the method is shown in 
Fig. 7.6. 

The stacking method can be divided into the following steps: 

1. create . T classifiers and learn each to get .m predictions (hypothesis . ht ), 
2. construct data set of predictions into a validation data set, 
3. construct a . C̄ meta-classifier that combines all .Cm classifiers.
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Fig. 7.6 General overview 
of the stacking method 

Table 7.1 Example stacking 
classifiers prediction results 

Predictions 

.C1 .C2 .C3 .CT . C̄

1 1 0 1 1 

0 0 0 1 0 

… … … … 

0 1 1 1 1 

An example of a few classifiers .C1,C2,C3,CT is  shown in Table  7.1. The pre-
dictions of each are chosen randomly (columns.C1 to.CT ). These predictions are the 
inputs for the . C̄ classifier. The final prediction is given in the last column. Similarly 
to the previous ensemble method, we use different classifiers from the scikit-learn 
package. In the current example, we include five different methods that are given 
in the Listing 7.15. We use the QDA, linear regression, kNN, and a decision tree 
classifier. 

1 import  numpy  as  np  
2 

3 from  sklearn  .  discriminant_analysis  import  QuadraticDiscriminantAnalysis  
4 from  sklearn  .  naive_bayes  import  GaussianNB  
5 from  sklearn  .  neighbors  import  KNeighborsClassifier  
6 from  sklearn  .  tree  import  DecisionTreeClassifier  
7 

8 from  sklearn  .  metrics  import  accuracy_score  

Listing 7.15 Stacking libraries import 

The implementation can be divided into two methods, one for each level. The 
function build_classifiers where we train the models (Listing 7.16) based 
on the scikit-learn implementations imported in the previous listing. The function 
returns a list of models trained on the same data set.
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1 def  build_classifiers  (  train_set  ,  train_labels  ):  
2 

3 neighbors  =  KNeighborsClassifier  ()  
4 neighbors  .  fit  (  train_set  ,  train_labels  )  
5 

6 bayes  =  GaussianNB  ()  
7 bayes  .  fit  (  train_set  ,  train_labels  )  
8 

9 qda  =  QuadraticDiscriminantAnalysis  ()  
10 qda  .  fit  (  train_set  ,  train_labels  )  
11 

12 return  neighbors  ,  bayes  ,  qda  

Listing 7.16 Stacking classification methods building 

In our example, the meta-classifier is built using the decision tree method. The 
meta-classifier used in the Listing 7.17 is used (line 9) between two loops. In the 
first loop, we collect the predictions of the first-level models. These predictions are 
then used as input for the decision tree method. Finally, the last loop goes through a 
testing set and returns the final prediction. 

1 def  build_stacked_classifier  (  classifiers  ,  train_set  ,  train_labels  ,  
test_set  ,  test_labels  ):  

2 output  =  []  
3 for  classifier  in  classifiers  :  
4 output  .  append  (  classifier  .  predict  (  train_set  ))  
5 meta_set  =  np.  stack  ((  output  [0]  ,  output  [1]  ,  output  [2])  ,  axis  =  1)  
6 

7 decision_tree  =  DecisionTreeClassifier  ()  
8 decision_tree  .  fit  (  meta_set  ,  train_labels  )  
9 

10 output  =  []  
11 for  classifier  in  classifiers  :  
12 output  .  append  (  classifier  .  predict  (  test_set  ))  
13 meta_test_set  =  np.  stack  ((  output  [0]  ,  output  [1]  ,  output  [2])  ,  axis  =  1)  
14 predicted  =  decision_tree  .  predict  (  meta_test_set  )  
15 return  predicted  

Listing 7.17 Stacked classification method 

Example 3 (Breast cancer classified using stacking method) To execute above, we 
can use three similar lines of code as in the previous method (Listing 7.18). 

1 from  sklearn  .  datasets  import  load_breast_cancer  
2 

3 breast  =  load_breast_cancer  ()  
4 

5 random_objects  =  np.  random  .  randint  (0  ,  178  ,  size  =140)  
6 data_set  =  breast  .  data  [  random_objects  ]  
7 labels  =  breast  .  target  [  random_objects  ]  
8 

9 train_set  ,  test_set  ,  train_labels  ,  test_labels  =  train_test_split  (  data_set  
,  labels  ,  test_size  =0.3 ,  random_state  =42)  

10 

11 classifiers  =  build_classifiers  (  train_set  ,  train_labels  )  
12 predicted  =  build_stacked_classifier  (  classifiers  ,  train_set  ,  train_labels  ,  

test_set  ,  test_labels  )  
13 accuracy  =  accuracy_score  (  test_labels  ,  predicted  )  
14 print  (  accuracy  )  

Listing 7.18 Stacking classification method used on breast dataset 

The accuracy achieved using the combined classifier is 97.62% where using a 
single decision tree only 90,48%.
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Table 7.2 Grading base training set 

Predictions 

.C1 .C2 .C3 .CT Label 

1 1 0 1 1 

0 0 0 1 0 

… … … … 

0 1 1 1 1 

Table 7.3 Grading attribute set 

Attributes 

.x1 .x2 .x3 .xn Graded 
predictions 

0.2 0.5 . −0.1 0.4 + 

. −0.1 0.15 . −0.7 0.5 + 

… … … … . −
0.8 0.2 . −0.24 0.6 + 

Grading 

Grading can be considered as a modified stacking method as the main goal here is to 
use the input of different models. The base data set is almost the same, but instead 
of using a meta-classifier, we only have the original labels for training purposes, as 
shown in Table 7.2. The main difference is in the way the data for the meta-classifier 
are given. The attributes (features) are given as input (Table 7.3). Graded predictions 
are the values of whether or not a prediction of a given classifier is done properly. 

The implementation is simple as in the previous methods, where the first function 
is implemented almost the same as in the stacking classifier (Listing 7.19). 

1 def  calculate_accuracy_vector  (  predicted  ,  labels  ):  
2 result  =  []  
3 for  i in  range  ( len  (  predicted  )):  
4 if predicted  [i]  ==  labels  [i]:  
5 result  .  append  (1)  
6 else  : 
7 result  .  append  (0)  
8 return  result  
9 

10 def  build_grading_classifier  (  classifiers  ,  train_set  ,  train_labels  ):  
11 output  =  []  
12 matrix  =  []  
13 for  classifier  in  classifiers  :  
14 predicted  =  classifier  .  predict  (  train_set  )  
15 output  .  append  (  predicted  )  
16 matrix  .  append  (  calculate_accuracy_vector  (  predicted  ,  train_labels  ))  
17 

18 grading_classifiers  =  []  
19 for  i in  range  ( len  (  classifiers  )):  
20 tree  =  DecisionTreeClassifier  ()  
21 tree  .  fit  (  train_set  ,  matrix  [i])
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22 grading_classifiers  .  append  (  tree  )  
23 return  grading_classifiers  

Listing 7.19 Grading meta classifier implementation 

The second function is about the grades of the predictions. We loop the predictions 
and grade if the prediction is correct or wrong (Listing 7.20). 

1 def  get_grads  (  predicted  ,  labels  ):  
2 result  =  []  
3 for  i in  range  ( len  (  predicted  )):  
4 if predicted  [i]  ==  labels  [i]:  
5 result  .  append  (1)  
6 else  : 
7 result  .  append  (0)  
8 return  result  

Listing 7.20 Grading grades calculation 

Testing the predictions includes the grades and the prediction. As in Listing 7.21, 
we have two models, one for the prediction and the second for the grading. 

1 def  test_prediction  (  classifiers  ,  grading_classifiers  ,  test_set  ,  i):  
2 prediction  =  classifiers  [i].  predict  (  test_set  )  
3 grad  =  grading_classifiers  [i].  predict  (  test_set  )  
4 return  prediction  ,  grad  

Listing 7.21 Grading prediction testing 

Example 4 (Breast classifier grading) The main part invokes the three functions 
that are explained above. An example of the implementation is shown in the Listing 
7.22. 

1 from  sklearn  .  datasets  import  load_breast_cancer  
2 

3 breast  =  load_breast_cancer  ()  
4 

5 random_objects  =  np.  random  .  randint  (0  ,  178  ,  size  =140)  
6 data_set  =  breast  .  data  [  random_objects  ]  
7 labels  =  breast  .  target  [  random_objects  ]  
8 

9 train_set  ,  test_set  ,  train_labels  ,  test_labels  =  train_test_split  (  data_set  
,  labels  ,  test_size  =0.5 ,  random_state  =42)  

10 

11 classifiers  =  build_grad_classifiers  (  train_set  ,  train_labels  )  
12 grading_classifiers  =  build_grading_classifier  (  classifiers  ,  train_set  ,  

train_labels  )  
13 prediction  ,  grad  =  test_prediction  (  classifiers  ,  grading_classifiers  ,  

test_set  ,  1)  

Listing 7.22 Grading main code used on breast set 

The results are shown in Table 7.4. The classifier makes two mistakes. The object 
#24 and #41 are the ones where the grading method is found where the classification 
is possibly made wrong. The accuracy of the model achieved is about 85,71%, so 
the grading method did not find all the mistakes.
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Table 7.4 Grading of classifier on the breast data set 

ID Prediction Grading Label ID Prediction Grading Label 

1 1 1 1 36 1 1 1 

2 0 1 0 37 0 1 0 

3 1 1 1 38 1 1 1 

4 0 1 0 39 0 1 0 

5 1 1 1 40 1 1 1 

6 1 1 1 41 0 0 1 

7 1 1 1 42 0 1 1 

8 1 1 1 43 0 1 1 

9 1 1 1 44 0 1 0 

10 0 1 0 45 0 1 0 

11 1 1 1 46 1 1 1 

12 1 1 1 47 1 1 0 

13 1 1 1 48 0 1 0 

14 0 1 0 49 0 1 0 

15 1 1 0 50 0 1 0 

16 0 1 0 51 0 1 0 

17 0 1 0 52 0 1 0 

18 0 1 1 53 1 1 1 

19 1 1 1 54 1 1 1 

20 0 1 0 55 0 1 0 

21 1 1 1 56 1 1 1 

22 1 1 1 57 0 1 1 

23 1 1 1 58 0 1 0 

24 1 0 0 59 0 1 0 

25 0 1 0 60 0 1 0 

26 0 1 0 61 1 1 1 

27 1 1 1 62 1 1 1 

28 1 1 0 63 0 1 0 

29 0 1 0 64 1 1 1 

30 0 1 0 65 1 1 1 

31 0 1 0 66 1 1 1 

32 0 1 0 67 1 1 1 

33 1 1 0 68 0 1 0 

34 0 1 0 69 0 1 0 

35 1 1 1 70 1 1 1
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Chapter 8 
Neural Networks 

Natural (biological) neurons are the fundamental building blocks of the nervous 
system, particularly the brain. These biological units process and transmit informa-
tion using electrical and chemical signals. Each neuron has three main components 
(see Fig. 8.1): 

1. Dendrites: Branch-like structures that receive signals from other neurons. These 
inputs can be excitatory or inhibitory, influencing the likelihood of firing of the 
neuron. 

2. Cell Body (Soma): Integrates the incoming signals from dendrites. If the com-
bined input exceeds a certain threshold, the neuron generates an action potential. 

3. Axon: A long and slender projection that transmits the action potential to other 
neurons via synapses. In the synapse, chemical neurotransmitters are released, 
which influence the activity of the next neuron. 

Processing within a neuron is an electrochemical event. Input signals, arriving as 
neurotransmitters in synapses, generate changes in the membrane potential of the 
neuron. If these changes sum up to exceed a critical threshold, an action potential—a 
rapid electrical impulse—travels down the axon to communicate with subsequent 
neurons. This threshold mechanism is the key to neuronal function as a decision-
making unit in the nervous system. 

Natural neurons communicate within highly interconnected networks, where the 
strength of synaptic connections (synaptic plasticity) is adapted based on experience, 
enabling learning and memory. 

Artificial neural networks (ANNs) are computational models inspired by the 
structure and function of natural neurons. In an ANN, artificial neurons, often called 
nodes or units, are organized into layers: an input layer, one or more hidden layers, 
and an output layer. 

Each artificial neuron mimics the behavior of a biological neuron: 

1. Input Signals: Each neuron receives input, typically represented as numerical 
values. 
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Fig. 8.1 Natural (biological) 
neuron has three main 
components: a dendrites, b 
soma, and c axon 

b 

a 

c 

2. Weights: Each input is associated with a weight that indicates its importance. 
The neuron calculates a weighted sum of the inputs. 

3. Bias: A bias term is added to the weighted sum, allowing the neuron to change 
its activation threshold. 

4. Activation Function: The result is passed through a non-linear activation func-
tion, determining the neuron output. 

The neuron output is then passed to the neurons in the next layer. By training 
the network and adjusting weights and biases using optimization algorithms such 
as stochastic gradient descent, the ANN learns to map inputs to outputs effectively, 
enabling it to perform tasks such as classification, regression, or generation. 

Unlike biological networks, ANNs operate using strictly mathematical rules and 
lack the biochemical complexity of natural neurons. However, conceptual similarity, 
the use of interconnected processing units, is key to their design. 

The first mathematical description of a neuron was proposed by Warren McCul-
loch and Walter Pitts in 1943 [ 1]. Their model, known as the McCulloch-Pitts Neuron, 
formalized the idea of a neuron as a simple computational unit: 

1. The neuron receives inputs .x1, x2,…, . xn , each associated with a binary value (0 
or 1). 

2. Each input is multiplied by the corresponding weight.w1, w2,…,.wn , representing 
the connection strength. 

3. The neuron computes a weighted sum: 

.z =
n∑

i=1

wi xi . (8.1) 

4. If the weighted sum exceeds a predefined threshold .theta, the neuron fires and 
produces a 1. Otherwise, it outputs a 0: 

. y =
{
1 if z ≥ θ

0 if z < θ

This binary model was inspired by logical operations and could simulate simple 
logical functions such as AND, OR, and NOT. McCulloch and Pitts demonstrated 
that networks of such neurons could, in principle, compute any function that is 
computable by a Turing machine, laying the foundation for neural network theory.
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Despite its simplicity, the McCulloch-Pitts model introduced several fundamental 
ideas: 

• Thresholding: The concept of activation based on input strength. 
• Weighted connections: The idea that inputs contribute differently to the output of 
a neuron. 

• Network computation: The realization that interconnected neurons can perform 
complex computations. 

This model inspired further developments, including the perceptron, introduced 
by Frank Rosenblatt in 1958 [ 2]. The perceptron extended the McCulloch-Pitts model 
by introducing adjustable weights and a learning algorithm, marking the beginning 
of trainable neural networks. 

Although the McCulloch-Pitts neuron was groundbreaking, its binary output lim-
ited its applicability. Subsequent models introduced continuous outputs using acti-
vation functions like the sigmoid, allowing neural networks to model more complex 
and non-linear relationships. These advancements, combined with the development 
of backpropagation in the 1980s, transformed neural networks into powerful tools 
for pattern recognition and machine learning. 

The journey from the McCulloch-Pitts model to modern deep learning reflects an 
ongoing effort to balance biological inspiration with mathematical and computational 
practicality, continually expanding the capabilities of artificial neural networks. 

Fun fact: In the 1930s, studying nerve axons was a major challenge due to 
their microscopic size and the limitations of available tools. Andrew Hodgkin 
and Alan Lloyd Huxley overcame this by turning to the giant axon of the 
squid, which is up to 1 millimeter in diameter. Working at Plymouth Marine 
Laboratory in 1939, they used freshly caught squid, racing against time to 
keep the axons viable. The squid’s axon, crucial for its jet propulsion, allowed 
them to directly measure electrical signals and develop their groundbreaking 
model of action potentials. This work, later earning them a Nobel Prize, 
transformed neuroscience and highlighted the squid’s unexpected role in 
advancing science. a

a https://pmc.ncbi.nlm.nih.gov/articles/PMC3424716/pdf/tjp0590-2571.pdf. 

8.1 Artificial Neurons 

Artificial neurons, inspired by their biological counterparts, form the essential com-
putational units of neural networks. These mathematical abstractions mimic the 
behavior of biological neurons in the human brain that process and transmit informa-
tion via electrochemical signals. In artificial neural networks, a neuron is designed
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to receive multiple inputs, each associated with a numerical weight representing its 
relative importance. The neuron aggregates these inputs into a weighted sum, adds a 
bias term, and applies a non-linear activation function to generate an output. This pro-
cess mirrors the way biological neurons integrate signals from synapses and decide 
whether to fire an action potential. 

The mathematical formulation of a neuron is straightforward yet remarkably 
powerful. Let .x1, x2, …,.xn represent the inputs to the neuron, and let .w1, w2, …, 
.wn denote their corresponding weights. The neuron computes the weighted sum 
.z = ∑n

i=1 wi xi + b , where . b is the bias term. The bias allows the neuron to adjust 
the output independently of the inputs, thereby increasing the flexibility of the model. 
The next step is to pass z through an activation function, denoted . f (z), to produce 
the output of the neuron. The activation function introduces non-linearity, a critical 
property that enables neural networks to approximate complex functions and solve 
non-linear problems. Without non-linear activation functions, a neural network would 
be equivalent to a linear model, regardless of its depth or complexity (Fig. 8.2). 

The choice of activation function significantly influences the behavior of a neuron 
and the overall performance of a neural network. The sigmoid function, one of the 
first activation functions, compresses the input . z into a range between 0 and 1, 
making it suitable for probability-based interpretations. However, sigmoid functions 
suffer from the vanishing-gradient problem, where gradients become extremely small 
for large or small input values, hindering effective weight updates during training. 
Another common activation function is the hyperbolic tangent (.tanh), which maps. z
to the range .[−1, 1], allowing it to capture both positive and negative relationships. 
Despite its wider output range, .tanh shares the problem of vanishing gradients with 
the sigmoid function. 

Modern neural networks frequently employ the Rectified Linear Unit (ReLU) 
activation function, which outputs . z directly if it is positive and zero otherwise. 
This simplicity makes ReLU computationally efficient and less prone to vanishing 
gradients, facilitating deeper network architectures. Variants of ReLU, such as Leaky 
ReLU and Parametric ReLU, address its potential drawback, dead neurons, which are 

Fig. 8.2 Example neuron
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neurons that output zero for all inputs during training, effectively becoming inactive. 
The choice of activation function is not merely a technical detail, but a strategic 
decision that profoundly affects the model’s ability to learn and generalize from 
data. 

Neurons are arranged in layers within a neural network: the input layer, one or 
more hidden layers, and the output layer. The input layer contains neurons cor-
responding to the features of the data, and its role is to pass these features forward 
without transformation. Hidden layers, as the name suggests, are not directly observ-
able and perform complex transformations on the data through weighted connections 
and activation functions. The output layer generates the final prediction or decision 
of the network. The dense connectivity between neurons in adjacent layers enables 
the network to build hierarchical representations of the data. For example, in image 
recognition tasks, lower layers might detect simple patterns such as edges or corners, 
while deeper layers identify more abstract features such as shapes or objects. 

Training a neural network involves optimizing the weights and biases of its neu-
rons to minimize the error between the predicted outputs and the true labels of a data 
set. This process typically employs backpropagation, a method for computing gra-
dients of the loss function with respect to each parameter in the network. Gradients 
are then used to update the weights and biases via an optimization algorithm such as 
stochastic gradient descent (SGD). The role of the neuron in this training process is 
pivotal, as the output of each neuron contributes to the overall error, and its gradient 
determines how much its parameters should be adjusted. 

The interconnected nature of neurons is both a strength and a challenge. Although 
the dense network structure enables powerful modeling capabilities, it also increases 
the risk of overfitting, where the network performs exceptionally well on the train-
ing data but fails to generalize to unseen data. Regularization techniques, such as 
weight decay and dropout, help mitigate this issue by introducing constraints or 
stochasticity into the learning process. These techniques often operate at the level 
of individual neurons, reinforcing the importance of understanding their role in the 
broader network. 

Artificial neurons, despite their simplicity, are the cornerstone of neural networks 
and, by extension, modern artificial intelligence. They embody the principles of 
abstraction and modularity, allowing complex systems to be constructed from simple 
components. The study of neurons not only reveals insights into the mechanisms 
of neural networks but also bridges the gap between computational models and 
biological intelligence, offering a glimpse into how artificial and natural systems can 
converge.
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Perceptron 

The perceptron, introduced by Frank Rosenblatt in 1958 [ 2], is one of the earliest and 
simplest models of artificial neurons and serves as the foundation for understanding 
more complex neural networks. Designed as a binary classifier, the perceptron aims to 
distinguish between two classes by learning a linear decision boundary. Structurally, 
a perceptron is composed of a single layer of neurons where each neuron performs 
a weighted sum of its inputs, adds a bias, and applies a step activation function to 
produce an output. The mathematical formulation can be expressed as 

.y = f

(
n∑

i=1

wi xi + b

)
, (8.2) 

where . f (z) is the step function that produces 1 if .z ≥ 0 and 0 otherwise. This sim-
plicity makes the perceptron easy to implement and train, but also imposes significant 
limitations, particularly in its inability to solve non-linearly separable problems. 

The training process for a perceptron involves adjusting its weights and bias using 
a supervised learning algorithm. Given a data set of input-output pairs, the perceptron 
learns by iteratively comparing its predictions to the actual labels and updating its 
parameters to reduce classification errors. The update rule for weights is given by 
.wi ← wi + �wi , where.�wi = η · (y − ŷ) · xi . Here,. η is the learning rate,. y is the 
true label, . ŷ is the predicted label, and.xi is the input feature. Similarly, the bias . b is 
updated using .b ← b + η · (y − ŷ). These updates are performed iteratively on the 
data set until the perceptron correctly classifies all training examples or a predefined 
maximum number of iterations is reached. The perceptron convergence theorem 
guarantees that the algorithm will find a solution if the data are linearly separable, 
but no such guarantee exists for non-linearly separable data. 

The perceptron’s ability to classify linearly separable data stems from its represen-
tation of a hyperplane in the input space. The weights and bias define the orientation 
and position of this hyperplane, which acts as the decision boundary between the 
two classes. For example, in a two-dimensional input space, the perceptron learns 
a straight line that separates data points belonging to different classes. However, 
when data points cannot be separated by a single hyperplane—such as in the XOR 
problem—the perceptron fails because its linear nature does not allow it to capture 
the underlying structure of the data. This limitation, famously demonstrated by Mar-
vin Minsky and Seymour Papert in their 1969 book Perceptrons [ 3], highlighted the 
need for more sophisticated models and led to a temporary decline in interest in 
neural networks, often referred to as the “AI winter” (Fig. 8.3). 

Despite its limitations, the perceptron remains a fundamental concept in the study 
of neural networks. Its simplicity makes it an excellent starting point for understand-
ing the principles of supervised learning, weight optimization, and decision bound-
aries. Furthermore, the architecture of the perceptron inspired the development of 
multilayer perceptrons (MLPs), which address its shortcomings by introducing hid-
den layers and non-linear activation functions. By stacking layers of perceptrons
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Fig. 8.3 McCulloch-Pitts perceptron 

Fig. 8.4 Multilayer perceptron 

and using algorithms like backpropagation to train them, MLPs can approximate 
complex, non-linear decision boundaries and solve problems that are beyond the 
capability of a single-layer perceptron (Fig. 8.4). 

The historical significance of the perceptron extends beyond its technical contri-
butions. It marked the first concrete step toward the realization of artificial neural 
networks, bridging the gap between theoretical models of computation and biologi-
cally inspired systems. In addition, the failure of the perceptron to solve non-linear 
problems underscored the importance of non-linearity in neural network design, a 
principle that remains central to modern deep learning architectures. Today, the per-
ceptron is often used as a pedagogical tool to introduce students and researchers 
to the basics of machine learning and neural network theory, providing a clear and 
intuitive framework for understanding more advanced models. 

In practical applications, the perceptron has been largely superseded by more 
advanced algorithms such as support vector machines, logistic regression, and deep 
neural networks. However, its historical role and conceptual simplicity ensure its con-
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tinued relevance in discussions of the evolution of artificial intelligence and machine 
learning. 

Example 1 (Perceptron) 
The code defines a simple structure for a neuron model in a neural network. 

The ActivationFunction class acts as a placeholder for activation functions. 
The neuron class initializes attributes such as input values, weights, bias, and 
learning parameters. It includes methods for setting random weights, scaling inputs, 
calculating weighted sums, and generating predictions using the activation function. 
The learning behavior is not implemented, and the activation function is left abstract. 

1 class  ActivationFunction  ():  
2 

3 def  return_y  (self ,s  =  float  ):  
4 raise  Exception  ("  NotImplementedException  ") 
5 

6 

7 class  Neuron  (  object  ):  
8 

9 input_values  =  []  
10 activation  =  ActivationFunction  ()  
11 bias  =  1.0  
12 weights  =  []  
13 output_values  =  []  
14 epochs  =  10  
15 error  =  0.2  
16 debug  =  False  
17 

18 

19 def  _  _set_random_weights  (  self  ):  
20 if  len  (  self  .  input  ) = =  0:  
21 raise  Exception  ("  Input  not  given  ") 
22 for  i in  xrange  ( len  (  self  .  input  [0])  ):  
23 self  .  weights  .  append  (  randint  (−10,10) /10.0)  
24 

25 def  get_sum  (self ,  iter  ):  
26 return  np.  dot  (np.  array  (  self  .  weights  ),  
27 np.  array  (  self  .  input_values  [  iter  ])) 
28 

29 def  set_weights  (self ,  weights  =  None  ):  
30 if weights  =  =  None  :  
31 self  .  __set_random_weights  ()  
32 else  : 
33 self  .  weights  =  weights  
34 

35 def  set_input  (self ,  input ,  scale  =  False  ):  
36 if scale  =  =  True  :  
37 self  .  input_values  =  np.  array  (  input  )/(  max  ( max  ( input  ))∗1.0)  
38 else  : 
39 self  .  input_values  =  input  
40 

41 def  learn  (  self  ):  
42 raise  Exception  ("  NotImplementedException  ") 
43 

44 def  get_predictions  (  self  ):  
45 prediction  =  []  
46 for  i in  xrange  ( len  (  self  .  output  )):  
47 prediction  .  append  (  
48 self  .  activation  .  return_y  (  self  .  get_s  (i)))  
49 return  prediction  

Listing 8.1 Perceptron implementation example
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Fun fact: The Perceptron was invented by Frank Rosenblatt, a psychologist 
and computer scientist, at the Cornell Aeronautical Laboratory in 1957. Its 
initial purpose was to mimic the human brain’s ability to recognize patterns. 
Rosenblatt boldly declared that the Perceptron would eventually be capable 
of tasks like recognizing faces and translating languages—predictions that 
were remarkably ahead of their time. 
In a high-profile demonstration in 1958, Rosenblatt showcased the Mark I 
Perceptron, a room-sized machine equipped with an array of photo sensors 
and an analog computing system. It was trained to distinguish between simple 
patterns, such as horizontal and vertical lines. The Perceptron was widely 
celebrated, with media outlets like The New York Times heralding it as a 
step toward building intelligent machines. The headlines declared that the 
Perceptron could “walk, talk, see, write, reproduce itself, and be conscious 
of its existence.” a

a https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-
psychologist-shows-embryo-of.html. 

Other Neuron Types 

Artificial neurons, the building blocks of neural networks, come in various types, 
each designed to address specific computational needs and problem domains. These 
neuron types differ primarily in their structure, activation functions, and the manner 
in which they process and transmit information. Although all neurons share the 
fundamental principle of combining input through weighted summation and applying 
bias, their distinct configurations enable neural networks to tackle a wide range of 
tasks, from basic classification problems to complex pattern recognition and decision-
making processes (Table 8.1). 

8.2 Shallow Networks 

Shallow networks refer to neural network architectures that consist of only one or two 
layers of neurons between the input and output layers. These networks, characterized 
by their simplicity and relatively small number of parameters, are often the starting 
point for understanding neural networks. Despite their straightforward structure, 
shallow networks are capable of solving a variety of problems, particularly those 
that are linearly separable or involve simpler non-linear relationships. Their reduced 
computational requirements and ease of implementation make them suitable for

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html
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Table 8.1 Comparison of different artificial neuron types 

Neuron type Characteristics and mathematical formulas 

Binary neuron Produces binary outputs (0 or 1). Suitable for linearly separable tasks. 

. f (z) =
{
1, z ≥ 0

0, z < 0

Linear neuron Outputs the weighted sum of inputs. Suitable for regression but lacks 
non-linearity. 
. f (z) = z

Sigmoid neuron Outputs values in (0, 1). Enables probabilistic interpretations. 
. f (z) = 1

1+e−z

Tanh neuron Outputs values in (. −1, 1). Captures positive and negative relationships. 
. f (z) = ez−e−z

ez+e−z

ReLU neuron Outputs input directly if positive; otherwise, 0. Efficient for deep net-
works. 
. f (z) = max(0, z)

Leaky ReLU Allows small slopes for negative inputs. Reduces “dead neuron” issues. 

. f (z) =
{
z, z ≥ 0

αz, z < 0

Softmax neuron Converts outputs into probabilities. Used for multi-class classification. 
. f (zi ) = ezi∑

j e
z j

RBF neuron Computes outputs based on distance to a center. Used for pattern recog-
nition. 
. f (x) = e−γ ||x−c||2

Spiking neuron Mimics biological spiking behavior. Used in neuromorphic computing 

Convolutional 
neuron 

Specialized for spatial features in images or videos. Found in CNNs 

Recurrent neuron Maintains memory of sequences. Used in RNNs, LSTMs, GRUs 

certain applications and for educational purposes, where they serve as an introduction 
to the principles of neural computation. 

The most basic shallow network consists of a single hidden layer sandwiched 
between the input and output layers. Each neuron in the hidden layer performs a 
weighted sum of its inputs, applies a bias, and uses an activation function to intro-
duce non-linearity. The output layer then processes the transformed data from the 
hidden layer and generates the final prediction. For example, in binary classification 
tasks, a shallow network might use sigmoid neurons in the output layer to predict 
probabilities, while the hidden layer could employ ReLU or tanh neurons to capture 
non-linear patterns in the data. 

Shallow networks are effective for problems where the underlying data structure 
can be captured with a limited number of non-linear transformations. For instance, 
in simple pattern recognition tasks, such as distinguishing between two shapes or 
basic regression tasks such as predicting a single variable, shallow networks often
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perform adequately. Their simplicity can also be advantageous when computational 
resources are limited or when the size of the data set is small, as shallow networks 
are less prone to overfitting compared to deeper architectures with a similar number 
of neurons. 

However, the limitations of shallow networks become evident as the complexity 
of the problem increases. Shallow networks struggle to approximate functions with 
intricate non-linear relationships or hierarchical structures. For example, in image 
recognition tasks, where features such as edges, textures, and objects need to be 
captured at different levels of abstraction, shallow networks lack the depth required 
to learn and represent such hierarchies effectively. This limitation is a direct con-
sequence of their architecture: With only one or two layers, the network cannot 
perform the successive transformations necessary to extract high-level features from 
raw input data. 

The theoretical limitations of shallow networks can be understood through the 
concept of representational power. Although it is true that a sufficiently large shal-
low network with an appropriate activation function can approximate any continuous 
function, as established by the universal approximation theorem, the number of neu-
rons required for such an approximation grows exponentially with the complexity 
of the function. This makes shallow networks inefficient and often impractical for 
problems that require high-dimensional feature representations or intricate decision 
boundaries. 

Despite these drawbacks, shallow networks remain relevant in certain scenarios. 
In applications where interpretability is critical, shallow networks are often preferred 
because of their simpler architecture, which makes it easier to understand and ana-
lyze how the network makes its decisions. In addition, they serve as a foundation 
for understanding the dynamics of neural networks, such as weight optimization, 
activation functions, and gradient-based learning algorithms. For this reason, shal-
low networks are widely used as educational tools and benchmarks to evaluate the 
performance of more advanced models. 

Another area where shallow networks can be advantageous is in transfer learning. 
Pre-trained deep networks can be used to extract high-level features from complex 
data sets, and a shallow network can then be employed as a classifier on top of these 
features. This approach leverages the representational power of deep networks while 
maintaining the simplicity and computational efficiency of shallow architectures. 

In modern machine learning, shallow networks have largely been replaced by deep 
neural networks for tasks involving high-dimensional data or complex relationships. 
However, their simplicity, efficiency, and role as a conceptual stepping stone to more 
advanced architectures ensure their continued relevance. They highlight the trade-
offs between model complexity, computational resources, and task requirements, 
providing valuable information on the design and application of neural networks. 
Understanding shallow networks is essential for appreciating the advancements and 
capabilities of deeper architectures, as well as for recognizing the conditions under 
which simpler models may still be the most appropriate choice.
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8.3 Learning Methods 

Learning methods in neural networks refer to the algorithms and processes by which a 
network adjusts its parameters, namely weights and biases, to minimize the difference 
between its predictions and the actual target values. These methods form the founda-
tion for the network’s ability to generalize data and solve a variety of tasks, including 
classification, regression, and pattern recognition. In general, learning methods are 
categorized into three main paradigms: supervised learning, unsupervised learning, 
and reinforcement learning. Each paradigm has unique characteristics, applications, 
and underlying algorithms. 

Supervised Learning 

Supervised learning is the most widely used paradigm for training neural networks, 
particularly for tasks where labeled data are available. In this method, the network 
is provided with input-output pairs, where each input corresponds to a known target 
label. The network learns by iteratively adjusting its parameters to minimize a loss 
function that quantifies the error between the predicted output and the actual label. 

The most common algorithm for supervised learning in neural networks is back-
propagation, which relies on the chain rule of calculus to compute the gradients of 
the loss function with respect to each parameter. These gradients are used to update 
the weights and biases through an optimization algorithm such as stochastic gradient 
descent (SGD) or its variants like Adam, RMSprop, or Adagrad. The update rule in 
gradient descent is typically expressed as .wi ← wi − η · ∂L

∂wi
, where . η is the learn-

ing rate, . L is the loss function, and . ∂L
∂wi

is the loss gradient with respect to weight 
.wi . Regularization techniques such as regularization for L1 or L2, dropout, or early 
stopping are often incorporated into the learning process to prevent overfitting and 
improve generalization. 

Supervised learning is extensively applied in tasks such as image classification, 
natural language processing, speech recognition, and medical diagnosis. Its success 
depends heavily on the quality and quantity of labeled data, as well as on the choice 
of network architecture and optimization algorithm.
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Fun fact: In one famous and interesting study authors explored how spu-
rious correlations in data can lead to flawed machine learning models and 
emphasizes the importance of interpretability. 
Researchers trained a classifier to distinguish wolves from huskies, but inten-
tionally biased the data set so that all wolf images featured snow in the back-
ground, while husky images did not. As a result, the model relied on snow 
as the deciding factor rather than animal-specific traits. a

a arXiv:1602.04938. 

Unsupervised Learning 

In unsupervised learning, the network is trained on input data without the correspond-
ing target labels. Instead of learning explicit input-output mappings, the network dis-
covers patterns, structures, or distributions inherent in the data. This is particularly 
useful for exploratory data analysis, clustering, and dimensionality reduction. 

One prominent approach in unsupervised learning is autoencoders, where the 
network learns to reconstruct its input by compressing it into a lower-dimensional 
representation and then decompressing it. The compressed representation captures 
the most salient features of the data, making autoencoders useful for tasks such as 
anomaly detection, image denoising, and feature extraction. 

Another common technique is clustering, where the network organizes data into 
groups based on similarity. Algorithms such as k-means or self-organizing maps 
(SOMs) are often employed in this context. Additionally, generative models, such as 
generative adversarial networks (GANs) and variational autoencoders (VAEs), fall 
under unsupervised learning. These models learn to generate new data samples that 
resemble the original data set, enabling applications in data augmentation, image 
synthesis, and creative AI. 

Unsupervised learning is particularly valuable in scenarios where labeled data 
is scarce or unavailable. However, its success often depends on the ability of the 
model to define meaningful patterns and structures, which can be subjective and 
task-dependent. 

Reinforcement Learning 

Reinforcement learning (RL) is a learning paradigm in which a neural network, 
called an agent, learns to make decisions by interacting with an environment. The 
agent receives feedback in the form of rewards or penalties based on its actions and

https://arxiv.org/pdf/1602.04938
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its goal is to maximize the cumulative reward over time. Unlike supervised learning, 
RL does not require labeled input-output pairs; instead, it relies on trial-and-error 
exploration and exploitation to learn optimal policies. 

Key algorithms in reinforcement learning include Q-learning, deep Q-networks 
(DQN), and policy gradient methods. In DQNs, for example, the agent uses a neural 
network to approximate a Q-function, which predicts the expected reward for taking 
a given action in a specific state. The network is trained using a combination of 
temporal-difference learning and backpropagation. 

Reinforcement learning has shown remarkable success in areas such as game 
playing (e.g., AlphaGo, AlphaZero), robotics, and autonomous vehicles. However, 
it is computationally intensive and often requires large amounts of interaction data 
to converge to optimal policies. 

Fun fact: In 2016, OpenAI researchers working on reinforcement learn-
ing faced an amusing, yet eye-opening scenario while developing an AI 
for the classic video game CoastRunners. The game, a boat-racing simu-
lator, involves steering a boat through a racecourse to compete for speed 
and position. Players (and AI) gain points for collecting targets and passing 
checkpoints while navigating the course. 
The researchers set a straightforward goal for their AI: maximize the score. 
They assumed that higher scores would naturally align with better racing 
performance, finishing the course quickly and efficiently. After training the 
AI, they excitedly watched it move to the water. 
To their surprise, the AI’s behavior deviated sharply from expectations. 
Instead of racing toward the finish line, the AI found a small area on the 
course where it could endlessly collide with objects and repeatedly collect 
the same set of points. It completely abandoned the race, instead opting to 
exploit the reward system in its narrowest sense: maximizing points without 
regard for the broader goal of finishing the race. 
This behavior was a textbook case of the alignment problem: AI did exactly 
what it was rewarded for, but entirely missed the designers’ true intent. The 
AI had not learned to race; it had learned to exploit a loophole in the scoring 
system. a

a https://openai.com/index/faulty-reward-functions/.

https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
https://openai.com/index/faulty-reward-functions/
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Semi-supervised and Self-supervised Learning 

Semi-supervised learning combines elements of supervised and unsupervised learn-
ing by using a small amount of labeled data alongside a larger pool of unlabeled 
data. This approach leverages the labeled data to guide the network, while exploiting 
the unlabeled data to improve generalization. Techniques like pseudo-labeling and 
consistency regularization are commonly used in semi-supervised learning. 

Self-supervised learning, a subset of unsupervised learning, involves training a 
network on tasks where the labels are derived automatically from the input data 
itself. For example, in contrastive learning, the network is trained to recognize similar 
and dissimilar pairs of data points. Self-supervised methods have gained significant 
attention for their ability to pre-train networks on large-scale data sets without manual 
labeling, followed by fine-tuning on downstream tasks. 

Online and Transfer Learning 

Online learning refers to scenarios where the model continuously updates its param-
eters as new data become available. This is particularly useful in dynamic environ-
ments where the data distribution evolves over time, such as stock market prediction 
or adaptive control systems. 

Transfer learning, on the other hand, involves reusing a pre-trained network for 
a new task, often with minimal additional training. Using the features learned on a 
large, general data set, transfer learning can significantly reduce training time and 
improve performance, particularly in domains with limited labeled data. 

Hybrid Approaches 

In practice, many neural networks use hybrid learning methods that combine elements 
of supervised, unsupervised, and reinforcement learning. For example, a network 
might use unsupervised pre-training to initialize weights, followed by supervised 
fine-tuning. Similarly, reinforcement learning can be augmented with supervised 
signals to accelerate learning. 

8.4 Training Algorithms 

Training algorithms are the core mechanisms through which neural networks learn 
from data by adjusting their parameters, weights, and biases to minimize errors 
and improve performance. These algorithms leverage mathematical optimization 
techniques to iteratively refine the model, ensuring that it can be generalized to 
unseen data. The choice of training algorithm significantly impacts the efficiency, 
convergence speed, and ultimate accuracy of a neural network. In general, training



220 8 Neural Networks

algorithms fall under the umbrella of optimization techniques, with variants tailored 
to specific tasks and architectures. 

Gradient Descent 

At the heart of most training algorithms lies gradient descent, a fundamental optimiza-
tion method. Gradient descent minimizes a loss function . L—a measure of network 
error—by updating the network parameters in the direction of the steepest descent, 
as defined by the gradient of . L with respect to each parameter. The update rule for 
a weight is expressed as 

.wi ← wi − η · ∂L
∂wi

, (8.3) 

where. η is the learning rate, a hyperparameter that controls the step size of the updates. 
Although conceptually simple, gradient descent has several practical limitations, such 
as sensitivity to the choice of. η and the potential to get stuck in local minima or saddle 
points in high-dimensional loss landscapes. 

Fun fact: The conceptual foundation of gradient descent can be traced back 
to Isaac Newton and Gottfried Wilhelm Leibniz in the seventeenth century. 
While neither explicitly developed gradient descent as we know it today, their 
pioneering work in calculus laid the groundwork for optimizing functions. 
Leibniz’s fascination with finding maxima and minima in calculus inspired 
later mathematicians to use derivatives to navigate optimization landscapes. 

Variants of Gradient Descent 

Batch Gradient Descent: In this approach, the gradients are computed using the 
entire data set. Although this ensures a stable update direction, it can be computa-
tionally expensive for large data sets, as the entire data set must be processed for 
each update. 

Stochastic Gradient Descent (SGD): Instead of computing gradients on the entire 
data set, SGD updates the parameters using a single data point (or a mini-batch) at 
each step. This introduces noise into the updates, which can help escape local minima
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but may also lead to instability. The trade-off between computational efficiency and 
convergence stability makes SGD a popular choice. 

Mini-Batch Gradient Descent: Combining the benefits of batch and stochastic gra-
dient descent, mini-batch gradient descent computes gradients using small subsets 
of the data. This strikes a balance between computational efficiency and stable con-
vergence, making it the most widely used variant in practice. 

Advanced Optimization Algorithms 

Although gradient descent and its variants provide a foundation for training, more 
sophisticated algorithms improve convergence speed and accuracy by dynamically 
adapting the learning process. 

Momentum: Builds upon SGD by incorporating the idea of velocity into the param-
eter updates. Instead of relying solely on the current gradient, momentum considers 
the accumulated gradients from previous steps. The update rule is as follows: 

.vt = βvt−1 + η
∂L
∂wi

, wi ← wi − vt , (8.4) 

where . β is the momentum factor. This method helps smooth the optimization path 
and accelerates convergence, particularly in regions with oscillatory gradients. 

Adagrad: Adapts the learning rate for each parameter according to the historical 
magnitude of its gradients. Parameters with frequently large gradients receive smaller 
updates, whereas those with smaller gradients receive larger updates. This ensures 
better handling of sparse data, but can lead to excessively small learning rates as 
training progresses. 

RMSprop: Addressing Adagrad’s problem of decreasing learning rate, RMSprop 
normalizes the learning rate by the square root of an exponentially decaying average 
of past squared gradients. This makes it suitable for nonstationary and large-scale 
problems. 

.gt = βgt−1 + (1 − β)

(
∂L
∂wi

)2

, wi ← wi − η√
gt + ε

· ∂L
∂wi

. (8.5) 

Adam: The Adaptive Moment Estimation (Adam) algorithm combines momentum 
and RMSprop to adapt the learning rates for each parameter. Adam maintains running
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averages of both the gradients and their squared values, enabling efficient and robust 
updates. 

.

mt = β1mt−1 + (1 − β1)
∂L
∂wi

, vt = β2vt−1 + (1 − β2)

(
∂L
∂wi

)2

wi ← wi − η√
v̂t + ε

· m̂t ,

(8.6) 

where.m̂t and.v̂t are bias-corrected estimates. Adam is widely used due to its ability 
to handle sparse gradients and adapt to nonstationary objectives. 

Regularization in Training Algorithms 

To improve generalization and prevent overfitting, regularization techniques are often 
incorporated into training algorithms. These include: 

• Weight Decay (L2 Regularization): adds a penalty proportional to the squared 
magnitude of the weights to the loss function. 

• Dropout: randomly disables a subset of neurons during each iteration, forcing the 
network to learn redundant representations. 

• Batch Normalization: normalizes the inputs of each layer to stabilize training 
and improve convergence. 

Challenges and Trade-offs 

Training algorithms must address challenges such as vanishing or exploding gradi-
ents, convergence to poor local minima, and computational efficiency. Choosing the 
right algorithm often involves trade-offs between speed, robustness, and suitability 
for the network architecture and data set size. 

8.5 Evaluation Metrics 

Evaluation metrics are essential tools for assessing the performance of neural net-
works and determining their ability to generalize beyond the training data. These 
metrics provide quantitative measures of the accuracy, precision, and reliability of a 
model, offering information on how well the network solves a given problem. The
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choice of evaluation metric depends on the task at hand, classification, regression, 
clustering, or generative modeling, and must align with the specific objectives of the 
application. This section discusses key evaluation metrics used in various machine 
learning tasks, emphasizing their interpretation, advantages, and limitations. 

Classification Metrics 

In classification tasks, the goal is to assign input data to pre-defined categories. Sev-
eral metrics are commonly used to evaluate the performance of classifiers: 

Accuracy is the ratio of correctly predicted instances to the total number of instances. 
Although intuitive and easy to compute, accuracy may not be suitable for imbalanced 
data sets, where one class dominates, as it can be misleadingly high even if the model 
performs poorly on the minority class. 

Precision, Recall, and F1-Score. These metrics are particularly useful in scenarios 
with imbalanced data: 

• Precision measures the proportion of true positive predictions among all positive 
predictions. 

• Recall (or Sensitivity) measures the proportion of true positive predictions among 
all actual positive instances. 

• F1-Score is the harmonic mean of precision and recall, balancing the trade-off 
between the two. 

These metrics are especially valuable in tasks like medical diagnosis, where false 
negatives (missed detections) or false positives (false alarms) can have significant 
consequences. 

ROC-AUC (Receiver Operating Characteristic-Area Under Curve) plots the true 
positive rate (TPR) against the false positive rate (FPR) at various thresholds. 

The AUC (Area Under the Curve) measures the ability of the model to discriminate 
between classes. A perfect classifier has an AUC of 1, while a random classifier has 
an AUC of 0.5. This metric is particularly useful for comparing classifiers when the 
decision threshold is flexible. 

Logarithmic Loss (Log Loss) evaluates the confidence of probabilistic predictions. 
It penalizes incorrect predictions based on the predicted probability assigned to the 
correct class:
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.Log Loss = − 1

N

N∑

i=1

C∑

j=1

yi j log(ŷi j). (8.7) 

Here, .N is the number of instances, .C is the number of classes, .yi j is a binary 
indicator for the correct class, and .ŷi j is the predicted probability. Lower log loss 
indicates better performance. 

Regression Metrics 

Regression tasks involve predicting continuous values, and the evaluation metrics 
focus on quantifying the deviation between predicted and actual values: 

Mean Absolute Error (MAE) measures the average absolute difference between 
predicted and actual values: 

.MAE = 1

N

N∑

i=1

|yi − ŷi |. (8.8) 

MAE is robust to outliers, but does not penalize large errors as much as squared-error 
metrics. 

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE): MSE 
computes the average of squared differences between predicted and actual values: 

.MSE = 1

N

N∑

i=1

(yi − ŷi )
2. (8.9) 

RMSE is the square root of MSE, providing an error metric in the same units as the 
target variable. Both metrics penalize large deviations more than small deviations, 
making them sensitive to outliers. 

R-Squared (Coefficient of Determination) measures the proportion of variance in 
the target variable explained by the model: 

.R2 = 1 − SSres

SStot
, (8.10) 

where .SSres is the residual sum of squares and .SStot is the total sum of squares. 
Higher values (closer to 1) indicate a better fit, but it can be misleading for non-
linear models or overfitting scenarios.
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Clustering Metrics 

In unsupervised learning tasks such as clustering, evaluation metrics compare the 
quality of group assignments or alignment with ground truth. 

Silhouette Score measures how well each data point fits within its assigned cluster 
relative to other clusters: 

.S(i) = b(i) − a(i)

max(a(i), b(i))
, (8.11) 

where.a(i) is the average intra-cluster distance and.b(i) is the average nearest-cluster 
distance. Scores range from. −1 to 1, with higher values indicating better clustering. 

Adjusted Rand Index (ARI) quantifies the similarity between predicted and true 
cluster assignments, adjusting for random chance. It ranges from . −1 (poor align-
ment) to 1 (perfect alignment). 

Davies-Bouldin Index evaluates cluster compactness and separation. Lower values 
indicate more distinct and well-separated clusters. 

Generative Model Metrics 

For generative models like GANs or VAEs, metrics evaluate the quality of generated 
data relative to the training data: 

Frechet Inception Distance (FID) compares the distribution of generated images to 
real images using embeddings from a pre-trained network, such as Inception. Lower 
FID indicates better alignment of distributions. 

Perceptual Quality Metrics: Human perceptual scores or learned metrics (e.g., 
LPIPS) assess the visual similarity or realism of generated outputs. 

Custom Metrics 

In many applications, custom metrics are designed to reflect domain-specific objec-
tives. For example, in medical imaging, metrics like the Dice coefficient or the Jaccard 
index assess the accuracy of image segmentations.
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Choosing the Right Metric 

The selection of the appropriate evaluation metrics depends on the task, the char-
acteristics of the data, and the specific requirements of the application. The metrics 
must align with the intended use of the model and account for trade-offs, such as pre-
cision vs. recall or sensitivity to outliers. Robust evaluation often combines multiple 
metrics to provide a comprehensive performance assessment. Understanding these 
metrics ensures reliable interpretation of results and facilitates informed decisions 
when refining neural network models. 

8.6 Deep Networks 

Deep learning represents a transformative advancement in machine learning, char-
acterized by its ability to model complex hierarchical patterns in data through the 
use of deep neural networks. Unlike traditional machine learning models, which 
often rely on hand-engineered features, deep learning automates feature extraction 
by learning multiple layers of representation directly from raw data. Each layer in a 
deep neural network captures increasingly abstract features, enabling the network to 
decompose complex problems into simpler, solvable components. This hierarchical 
learning process has led to breakthroughs in fields such as computer vision, natural 
language processing, speech recognition, and autonomous systems. 

The “depth” of a neural network refers to the number of hidden layers it con-
tains. Although shallow networks typically have one or two hidden layers, deep 
networks can consist of dozens or even hundreds of layers, each containing thou-
sands of interconnected neurons. These layers are often structured to extract features 
progressively: The lower layers identify simple patterns such as edges or textures, 
the intermediate layers capture complex patterns such as shapes or objects, and the 
higher layers integrate these patterns into a holistic understanding of the input data. 
This depth empowers deep networks to approximate highly non-linear functions and 
solve problems that are infeasible for shallow architectures (Fig. 8.5). 

The conceptual foundation of deep learning lies in its ability to generalize the 
learning process to diverse and complex domains. This is achieved through the use 
of advanced optimization techniques, non-linear activation functions, and large-scale 
data sets. Deep networks leverage algorithms such as backpropagation to compute 
gradients efficiently and optimization methods such as Adam or RMSprop to update 
their parameters effectively. Regularization techniques, such as dropout and batch 
normalization, help mitigate overfitting and improve the network’s ability to gener-
alize to unseen data. 

A key enabler of deep learning has been the dramatic increase in computational 
power, driven by advances in hardware such as GPUs and TPUs, and the availability of 
large-scale annotated data sets. These developments have allowed researchers to train 
and deploy deep networks for tasks that were previously considered intractable. For
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Fig. 8.5 Deep artificial neural network with hidden layers 

example, convolutional neural networks (CNNs) have revolutionized image recog-
nition, achieving human-level performance in tasks such as object detection and 
segmentation. Similarly, recurrent neural networks (RNNs) and their variants, such 
as long short-term memory (LSTM) and gated recurrent units (GRU), have trans-
formed sequence modeling tasks such as language translation and speech synthesis. 

The success of deep learning also comes from its versatility. By adapting the 
architecture of a network to the specific requirements of a task, deep learning mod-
els can be applied across domains with minimal changes. For instance, generative 
adversarial networks (GANs) have been used for image synthesis, data augmenta-
tion, and creative applications, while transformer-based architectures, such as BERT 
and GPT, have redefined the state-of-the-art in natural language understanding. 

Despite its remarkable achievements, deep learning is not without challenges. 
Training deep networks often requires significant computational resources and large 
amounts of labeled data. In addition, deep networks can be opaque, making their 
decision-making processes difficult to interpret, raising concerns about trust and 
transparency in critical applications like healthcare and finance. Furthermore, issues 
such as overfitting, vanishing, or exploding gradients, and sensitivity to hyperparam-
eter selection necessitate careful model design and training. 

Deep learning is not just a tool but a paradigm shift in artificial intelligence. Its 
ability to learn directly from data, combined with its scalability and adaptability, 
positions it as a cornerstone of modern AI research and applications. As the field 
continues to evolve, innovations in architectures, optimization techniques, and com-
putational frameworks will further expand the boundaries of what deep learning can 
achieve.
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Fun fact: One of the more whimsical moments in the history of deep net-
works occurred in 2012, when researchers at Google trained a deep neural 
network on millions of unlabeled YouTube video frames. The system, a pre-
cursor to modern convolutional neural networks, learned to recognize objects, 
including cats, without ever being explicitly told what a cat was. 
This achievement, led by Andrew Ng and Jeff Dean, demonstrated the power 
of unsupervised learning with deep architectures. The “cat video recognition” 
experiment gained media attention and became a humorous but powerful 
symbol of AI’s potential. a

a https://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-
identify. 

Frameworks and Libraries 

The rise of deep learning has been accompanied by the development of power-
ful frameworks and libraries that simplify the design, training, and deployment of 
neural networks. These tools provide user-friendly abstractions, efficient computa-
tional backends, and extensive documentation, enabling researchers and practitioners 
to focus on experimentation and application rather than low-level implementation 
details. Frameworks and libraries for deep learning support a wide range of function-
alities, from building simple feedforward networks to designing complex architec-
tures for tasks like natural language processing, computer vision, and reinforcement 
learning. 

PyTorch 

PyTorch, developed by the Facebook AI Research Lab—Meta AI, has gained pop-
ularity for its dynamic computation graph, which allows models to be defined and 
modified on the fly. This feature makes PyTorch, especially suitable for research and 
experimentation. Its Pythonic interface and strong community support have further 
contributed to its widespread adoption. PyTorch supports seamless integration with 
Python libraries such as NumPy and SciPy, enabling easy data manipulation. The 
introduction of TorchScript and PyTorch Lightning has enhanced its capabilities for 
production deployment and structured training, making it a versatile choice for both 
research and production.

https://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify
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TensorFlow 

TensorFlow, developed by Google Brain, is one of the most widely used frameworks 
for deep learning. Known for its flexibility and scalability, TensorFlow supports a 
variety of neural network architectures and provides tools for deploying models on 
diverse platforms, including CPUs, GPUs, and TPUs. It uses a computational graph 
abstraction, where the nodes represent the operations and the edges represent the data 
flow. TensorFlow’s high-level API, Keras, simplifies model building by providing an 
intuitive interface for constructing and training networks. TensorFlow is particularly 
valued in production environments, where its TensorFlow Serving and TensorFlow 
Lite components facilitate model deployment on servers and edge devices. 

Hugging Face Transformers 

Hugging Face provides a specialized library for natural language processing (NLP) 
that focuses on transformer-based models such as BERT, GPT, and T5. The library 
offers pre-trained models, simplifying the fine-tuning process for downstream tasks 
such as text classification, translation, and summarization. The integration of Hug-
ging Face with TensorFlow and PyTorch allows users to take advantage of the 
strengths of both frameworks while benefiting from the library’s focus on NLP. 

Keras 

Initially, an independent library, Keras is now tightly integrated into TensorFlow as its 
high-level API. Keras focuses on ease of use, modularity, and extensibility, making it 
an excellent choice for beginners and rapid prototyping. Provides a straightforward 
interface for defining neural network layers, specifying loss functions, and training 
models. Keras abstracts much of the complexity of TensorFlow, allowing users to 
build and train deep learning models with minimal code. Despite its simplicity, 
Keras is powerful enough to support advanced tasks through custom layers and loss 
functions. 

Fastai 

Fastai is a high-level library built on PyTorch that emphasizes ease of use and rapid 
experimentation. Abstracts much of the boilerplate code involved in deep learning, 
allowing users to focus on model design and evaluation. Fastai is particularly popular 
for educational purposes and practical applications, offering utilities for tasks like 
computer vision, text analysis, and tabular data processing.
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Specialized Libraries 

OpenCV (Open-Source Computer Vision Library): Provides tools for image pro-
cessing and computer vision tasks, often used alongside deep learning frameworks 
for preprocessing and feature extraction. 

Scikit-learn: While primarily a machine learning library, Scikit-learn seamlessly 
integrates with deep learning frameworks, offering tools for data pre-processing, 
model evaluation, and integration with simpler models. 

TensorRT: NVIDIA’s TensorRT optimizes trained neural networks for deployment 
on NVIDIA GPUs, significantly improving inference speed. 

Considerations for Framework Selection 

The choice of framework depends on the specific requirements of the task, the 
user’s familiarity with programming paradigms, and the intended deployment envi-
ronment. Research-oriented projects often favor PyTorch for its flexibility, while 
production-focused applications may prefer TensorFlow for its robust deployment 
ecosystem. Libraries like Hugging Face and Fastai cater to domain-specific needs, 
further enhancing the versatility of deep learning. 

Complementary Priors 

The concept of complementary priors emerges in the context of deep learning and 
probabilistic models, where it plays a critical role in addressing issues related to rep-
resentation learning, disentanglement, and optimization. At its core, complementary 
priors refer to constraints or assumptions imposed on latent variables in probabilistic 
models to mitigate problems such as overfitting, ambiguity, or redundancy in feature 
representation. By guiding the model to prefer certain distributions or relationships 
over others, complementary priors help to improve generalization, interpretability, 
and efficiency. 

Understanding Priors in Machine Learning 

In probabilistic models, a priori represents the assumptions made about the distribu-
tion of a variable before observing any data. For example, in a Bayesian framework, 
priors encapsulate beliefs about the parameters of a model, which are updated upon 
observing evidence to form a posterior distribution. Priors are especially important in 
deep learning models with latent variables, such as Variational Autoencoders (VAEs)
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or Bayesian Neural Networks, where they regulate the latent space by imposing prob-
abilistic constraints. 

Complementary priors take this concept further by introducing priors that interact 
with one another to encourage disentanglement or diversity among latent features. 
This ensures that the learned latent variables capture distinct, non-overlapping aspects 
of the data, reducing redundancy, and improving the quality of representation. 

Complementary Priors in Deep Learning 

In deep generative models such as VAEs, it is often assumed that latent variables . z
follow a standard Gaussian distribution as a priori,.p(z) = N (0, I ). However, during 
training, the posterior .q(z|x) may deviate from this prior due to the attempt of the 
model to fit the data. Without additional constraints, this can lead to issues such as 
mode collapse, where different latent variables converge to similar representations, 
reducing the effectiveness of the model. 

Complementary priors address these challenges by imposing additional proba-
bilistic structures on the latent space. These structures may include the following: 

Disentanglement: Encourage latent variables to capture independent factors of vari-
ation in the data. For example, in a model trained on images, one variable might rep-
resent object position while another represents color or size. Complementary priors 
ensure that these factors are distinct and do not interfere with each other. 
Regularization: Complementary priors can act as regularizers, penalizing deviations 
from desired distributions. For instance, enforcing sparsity in latent variables ensures 
that only a subset of variables is active for any given input, enhancing interpretability 
and efficiency. 
Consistency: Priors can enforce consistency between latent variables and observed 
data, ensuring that latent representations align with domain-specific knowledge or 
constraints. 

Applications of Complementary Priors 

Variational Autoencoders (VAEs): In VAEs, complementary priors are often used 
to improve the disentanglement of latent variables. For example, .β-VAE introduces 
a weighting factor .β to the KL divergence term in the loss function, effectively 
strengthening the influence of the prior on the latent space. This encourages the 
model to prioritize disentangled representations over perfect reconstruction. 

Bayesian Neural Networks: In Bayesian neural networks, complementary priors 
are used to regularize the distribution of weights, preventing overfitting and enabling 
uncertainty estimation. These priors can incorporate domain knowledge or promote 
sparsity to improve model robustness.
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Generative Adversarial Networks (GANs): Complementary priors can guide the 
latent space of GANs, ensuring that different latent variables correspond to distinct 
and meaningful features of the generated data. This is particularly useful in condi-
tional GANs, where the latent space must align with specific input conditions. 

Disentangled Representations: Complementary priors are critical in models 
designed to learn interpretable and disentangled features. For example, in unsu-
pervised learning tasks, they ensure that latent variables capture independent aspects 
of variation in the data, such as pose, lighting, or identity in image data sets. 

Hierarchical Models: In hierarchical generative models, complementary priors can 
define relationships between different levels of the latent hierarchy, ensuring that 
higher-level variables capture global patterns, while lower-level variables focus on 
local details. 

Challenges and Considerations 

Although complementary priors offer significant benefits, their design and imple-
mentation pose challenges: 

Trade-offs: Imposing overly restrictive priors can hinder the flexibility of the model 
and lead to underfitting, while insufficient constraints can result in entangled or 
redundant representations. 

Choice of Priors: Selecting appropriate complementary priors often requires domain 
expertise and experimentation, as the effectiveness of a prior depends on the specific 
data and task. 

Computational Complexity: Imposing complementary priors, particularly in com-
plex models, can increase computational demands during training. 

Conclusion 

Complementary priors are a powerful mechanism for improving the performance and 
interpretability of probabilistic and deep learning models. By imposing constraints 
on the latent space, they ensure that the learned representations are disentangled, 
meaningful, and aligned with the underlying structure of the data. As deep learn-
ing models continue to advance, complementary priors will remain a vital tool for 
addressing challenges in representation learning and probabilistic modeling.
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8.7 Deep Convolutional Neural Networks 

Deep Convolutional Neural Networks (DCNNs) are a specialized class of neural 
networks designed to process and analyze structured data, particularly images and 
spatial hierarchies. They have revolutionized fields such as computer vision, medical 
imaging, and autonomous systems by achieving state-of-the-art performance in tasks 
such as image classification, object detection, and semantic segmentation. DCNNs 
extend the architecture of traditional neural networks by introducing convolutional 
layers that extract local patterns from input data, pooling layers that reduce dimen-
sionality while preserving essential information, and fully connected layers that per-
form high-level reasoning and classification. These components work together to 
enable DCNNs to learn hierarchical representations, where early layers capture sim-
ple features such as edges, and deeper layers encode more complex structures such 
as shapes and objects. Over the years, numerous architectures have been developed, 
including LeNet, AlexNet, VGG, ResNet, and EfficientNet, each pushing the bound-
aries of accuracy and efficiency. This chapter provides an in-depth exploration of the 
foundational components and common architectures of DCNNs, offering insights 
into their design principles and practical applications. 

Convolutional Layers 

Convolutional layers are the cornerstone of Deep Convolutional Neural Networks 
(DCNNs). They perform the convolution operation, which is the process of slid-
ing a filter (or kernel) over the input data to extract spatial features. This operation 
enables convolutional layers to detect patterns such as edges, textures, and shapes 
in images, which are fundamental to understanding higher-level structures in the 
data. Unlike fully connected layers, which treat all input features equally, convo-
lutional layers exploit spatial hierarchies, allowing the network to learn localized 
and translation-invariant features. This makes them highly effective for tasks such 
as image recognition, object detection, and medical imaging. 

The Convolution Operation 

The convolution operation involves three main components: 

1. Input: Typically a multidimensional tensor, such as a 2D image or a 3D video 
frame. For a color image, the input has three channels (Red, Green, and Blue). 

2. Kernel (Filter): A small matrix of learnable weights, often smaller than the input. 
The common kernel sizes are .3 × 3, .5 × 5, or  .7 × 7. Each kernel is designed to 
detect specific patterns in the input data. 

3. Stride: The number of steps in which the kernel moves across the input during the 
convolution operation. A larger stride results in a smaller output size and faster 
computation, but may lose finer details.
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4. Padding: Additional border values are added to the input to control the spatial 
dimensions of the output. Common types include: 

5. Valid Padding: No padding, resulting in a smaller output. 
6. Same Padding: Padding added to ensure that the output size matches the input 

size. 

The convolution operation computes the dot product between the kernel and the 
overlapping region of the input. Mathematically, for an input .X and a kernel . K , the  
output . Y at a specific location is given by 

.Y (i, j) =
∑

m

∑

n

X (i + m, j + n) · K (m, n), (8.12) 

where .m and . n are the kernel indices. 

Channels and Depth 

In real-world applications, the input data often consists of multiple channels. For 
example, an RGB image has three channels that correspond to red, green, and blue 
intensities. Convolutional layers account for this by using a filter with the same depth 
as the input. If the input has. C channels and the kernel size is.k × k, the kernel dimen-
sions will be .k × k × C . Each kernel produces a single 2D output (or feature map), 
and multiple kernels are applied to extract various features, resulting in an output 
tensor with multiple feature maps. 

Feature Maps and Activation 

The output of a convolutional layer, often referred to as a feature map, captures the 
responses of the input to the applied kernels. These feature maps are then passed 
through an activation function to introduce non-linearity, allowing the network to 
model complex patterns. The most common activation function used in convolutional 
layers is the Rectified Linear Unit (ReLU), defined as . f (x) = max(0, x). 

ReLU ensures computational efficiency while addressing vanishing gradient prob-
lems during training. 

Advantages of Convolutional Layers 

1. Parameter Sharing: The same kernel is applied across the entire input, signifi-
cantly reducing the number of learnable parameters compared to fully connected 
layers. This makes convolutional layers computationally efficient and less prone 
to overfitting. 

2. Sparsity of Connections: Each neuron in a convolutional layer connects to a small 
localized region of the input (the receptive field). This focus on local patterns 
allows the network to detect features at various spatial scales.
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3. Translation Invariance: By learning local patterns and applying them across the 
entire input, convolutional layers make the network robust to small translations 
and distortions in the input data. 

Pooling Layers 

Pooling layers are a key component of deep convolutional neural networks (DCNNs), 
which reduce the spatial dimensions of feature maps while retaining the most impor-
tant information. By summarizing local regions, pooling improves computational 
efficiency, provides translation invariance, and mitigates overfitting. These layers 
are interspersed between convolutional layers to progressively condense the spatial 
representation, allowing for deeper network architectures without excessive compu-
tational overhead. 

The most common pooling methods include max pooling, which selects the max-
imum value from a pooling window, and average pooling, which computes the mean 
value. Max pooling emphasizes prominent features such as edges or textures, while 
average pooling smooths representations and retains broader contextual information. 
Global pooling, often used in architectures like ResNet, condenses the entire spatial 
dimension into a single value per feature map, enabling a seamless transition to fully 
connected layers. 

Pooling parameters such as kernel size, stride, and padding control the dimen-
sionality reduction process. For example, a .2 × 2 kernel with a stride of 2 reduces 
the size of the feature map by half in both dimensions. Although pooling is effective 
in capturing high-level features, it can lead to the loss of fine-grained spatial details, 
prompting the use of alternatives like strided convolutions or attention mechanisms 
in modern architectures. 

Despite these challenges, pooling remains integral to DCNNs for tasks such as 
image classification, object detection, and semantic segmentation, where hierarchi-
cal feature extraction is essential. Tools like TensorFlow and PyTorch simplify the 
implementation of a pooling layer, making them a staple in deep learning workflows. 

Fully Connected Layers 

Fully connected (FC) layers are a fundamental building block of neural networks, 
including Deep Convolutional Neural Networks (DCNNs). Typically placed at the 
end of a network, fully connected layers serve as the decision-making mechanism, 
transforming the high-level features learned from the preceding convolutional and 
pooling layers into final predictions. Unlike convolutional layers, which focus on 
localized spatial patterns, fully connected layers treat all input features equally, 
establishing dense connections between neurons. This dense connectivity enables 
the network to combine spatially distributed features into a global representation,
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crucial for classification, regression, and other tasks that require holistic understand-
ing. 

Structure of Fully Connected Layers 

1. Input Representation: 
Fully connected layers receive flattened inputs, typically feature maps from the 
final convolutional or pooling layer. For example, a .7 × 7 × 512 feature map is 
reshaped into a 1D vector with .7 · 7 · 512 = 25, 088 elements. 

2. Neuron Connections: 
Each neuron in an FC layer connects to every input feature, resulting in the weight 
matrix .W of dimensions .n × m, where . n is the number of input features and . m
is the number of output neurons. 

3. Forward Pass: 
The layer computes the weighted sum of inputs, adds a bias term . b, and applies 
an activation function: .y = f (Wx + b). Here, . f (·) is the activation function, 
commonly a ReLU, sigmoid, or softmax depending on the task. 

4. Output Representation: 
The output dimensions depend on the number of neurons in the layer. For instance, 
the last FC layer in a classification network outputs probabilities over . k classes 
using a softmax activation. 

Common Architectures 

Deep convolutional neural networks (DCNNs) have undergone significant evolution 
through the development of influential architectures that have shaped modern com-
puter vision. These architectures, including AlexNet, VGG, GoogLeNet, ResNet, 
and others, introduced novel design strategies to address challenges such as vanish-
ing gradients, computational inefficiency, and the need for robust feature extraction. 
Each architecture provided transformative insights that improved the depth, scala-
bility, and efficiency of neural networks. 

AlexNet, one of the first major breakthroughs, demonstrated the power of deep 
learning in large-scale image classification by utilizing GPUs for training, employing 
ReLU activations and integrating dropout for regularization. It marked the beginning 
of widespread adoption of deep networks in computer vision. VGG expanded on 
this success by showing that deeper networks, constructed with uniform small con-
volutional kernels, could achieve better performance while maintaining a modular 
design. This simplicity and scalability made VGG a widely adopted standard for 
further experimentation. 

GoogLeNet introduced the concept of multiscale feature extraction through the 
Inception module, enabling the network to capture features at varying resolutions 
while maintaining computational efficiency. It highlighted the importance of balanc-
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ing depth and efficiency in neural network design. ResNet addressed the problem of 
vanishing gradients in deep networks by introducing residual connections, allowing 
for training of extremely deep architectures. This innovation set a new benchmark for 
image classification and inspired numerous extensions and variations in subsequent 
models. 

DenseNet built on the idea of residual connections by introducing dense con-
nectivity, where each layer is connected to all the preceding layers. This approach 
improved feature reuse and gradient flow, leading to parameter-efficient architectures. 
Lightweight models like MobileNet and EfficientNet further extended these princi-
ples by focusing on resource efficiency, employing techniques such as depthwise 
separable convolutions and compound scaling to optimize performance for mobile 
and embedded systems. 

8.8 Recurrent Neural Networks 

Recurrent neural networks (RNNs) constitute a specialized category of neural net-
works specifically engineered for the modeling of sequential and time-dependent 
data. In contrast to feedforward networks, which process input in isolation, RNNs 
integrate memory via recurrent connections, thereby enabling the retention and uti-
lization of information from prior inputs. This capability of capturing temporal 
dependencies makes RNNs exceptionally effective for applications such as natu-
ral language processing, speech recognition, and time series analysis. Over time, 
traditional RNNs have exhibited limitations, notably vanishing gradients and diffi-
culties in learning long-term dependencies, precipitating the development of more 
advanced variants, namely long short-term memory (LSTM) networks and Gated 
Recurrent Units (GRUs). These advances have considerably broadened the scope of 
RNNs across a diverse array of sequence prediction tasks, including language mod-
eling, sentiment analysis, and dynamic system forecasting. This chapter examines 
the fundamental concepts of RNNs, explores the architectures of LSTMs and GRUs, 
and emphasizes their applications in sequence prediction problems. 

Basic RNN 

Recurrent neural networks (RNNs) are a foundational architecture in deep learning, 
designed to process sequential data by incorporating temporal dependencies into the 
learning process. Unlike feedforward networks, where inputs are processed inde-
pendently, RNNs introduce recurrence by maintaining a hidden state that is updated 
at each time step. This hidden state acts as a memory, capturing information about 
previous inputs and allowing the network to model sequences in which the order of 
inputs is critical.
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The architecture of an RNN involves a recurrent loop that connects the output of 
a hidden layer back to its input in subsequent time steps. Mathematically, the hidden 
state at time . t , denoted . ht , is calculated as a function of the current input .xt and the 
previous hidden state .ht−1. This is expressed as: 

.ht = f (Whht−1 + Wxxt + b), (8.13) 

where .Wh and .Wx are weight matrices, . b is a bias vector, and . f is an activation 
function, commonly a hyperbolic tangent (.tanh) or sigmoid. The network output . yt
at time . t is typically derived from the hidden state: 

.yt = g(Wyht + c), (8.14) 

where .Wy is the output weight matrix, . c is a bias vector, and . g is often a softmax 
function for classification tasks. 

This recursive nature enables RNNs to maintain a temporal representation of 
the data, making them suitable for applications involving sequences, such as time-
series forecasting, natural language processing, and speech recognition. However, 
this same recursion presents challenges during training. One significant issue is the 
vanishing-gradient problem, where the gradients of the loss function with respect to 
earlier time steps diminish exponentially as backpropagation progresses through the 
sequence. This makes it difficult for basic RNNs to learn long-term dependencies, 
as the influence of earlier inputs on later output becomes negligible. In contrast, 
exploding gradients, although less common, can cause instability during training. 

Despite these limitations, basic RNNs provide a simple and elegant framework 
for modeling sequential data. They serve as the foundation for more advanced archi-
tectures, such as long short-term memory (LSTM) networks and gated recurring 
units (GRUs), which incorporate mechanisms to mitigate the challenges of training 
in long sequences. Basic RNNs remain an important theoretical construct and are 
still effective for tasks with short-term dependencies and modest sequence lengths. 
They also provide valuable insights into the interplay between network architecture 
and the temporal nature of data, laying the groundwork for the development of more 
sophisticated recurrent models. 

Example 2 (RNN classification) 
This code implements a simple RNN-based neural network using the Keras library 

to classify handwritten digits from the MNIST data set. It loads the MNIST data, 
reshapes them into sequences of 28 time steps with 28 features (suitable for RNN 
input), and normalizes pixel values to the range [0, 1]. 

The model consists of a SimpleRNN layer with 128 units, followed by a Dense 
layer with 10 units for output (corresponding to the 10 digit classes) and a softmax 
activation for classification. The network is compiled using categorical cross-
entropy loss, the Adam optimizer, and accuracy as the evaluation metric. It trains
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for 10 epochs with a batch size of 128 and evaluates the model on the test data set, 
returning the loss and accuracy. 

1 import  numpy  as  np  
2 from  keras  .  models  import  Sequential  
3 from  keras  .  layers  import  Dense ,  Activation  ,  SimpleRNN  
4 from  keras  .  utils  import  to_categorical  ,  plot_model  
5 from  keras  .  datasets  import  mnist  
6 

7 (  x_train  ,  y_train  ),  (  x_test  ,  y_test  )  =  mnist  .  load_data  ()  
8 

9 

10 y_train  =  to_categorical  (  y_train  )  
11 y_test  =  to_categorical  (  y_test  )  
12 

13 x_train  =  np.  reshape  (  x_train  ,[−1,  28  ,  28])  
14 x_test  =  np.  reshape  (  x_test  ,[−1,  28  ,  28])  
15 

16 x_train  =  x_train  .  astype  (’  float32  ’)  /  255  
17 x_test  =  x_test  .  astype  (  ’  float32  ’)  /  255  
18 

19 

20 network  =  Sequential  ()  
21 network  .  add  (  SimpleRNN  (  units  =128 ,  
22 input_shape  =(28  ,  28)  ))  
23 network  .  add  (  Dense  (10)  )  
24 network  .  add  (  Activation  (  ’  softmax  ’))  
25 network  .  summary  ()  
26 

27 network  .  compile  (  loss  =’  categorical_crossentropy  ’,  optimizer  =’adam  ’,  metrics  
=[  ’  accuracy  ’]) 

28 network  .  fit  (  x_train  ,  y_train  ,  epochs  =10  ,  batch_size  =128)  
29 

30 loss ,  acc =  network  .  evaluate  (  x_test  ,  y_test  ,  batch_size  =128)  

Listing 8.2 Keras implementation of RNN classification of MNIST data set 

Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent 
Neural Network (RNN) designed to address the limitations of basic RNNs, particu-
larly the vanishing gradient problem. Introduced by Hochreiter and Schmidhuber in 
1997 [ 4], LSTMs enable effective modeling of long-term dependencies in sequential 
data by incorporating a memory cell and a system of gates that regulate the flow 
of information. These innovations allow LSTMs to retain and update information 
over extended sequences, making them particularly suitable for tasks such as natural 
language processing, time series forecasting, and speech recognition. 

The core of an LSTM is its memory cell, which acts as a persistent storage 
mechanism, preserving information over arbitrary time intervals. This memory is 
modulated by three gates: the input gate, the forget gate, and the output gate. Each 
gate performs a distinct function and is controlled by readable parameters. The input 
gate determines to what extent new information is allowed to enter the memory 
cell, while the forget gate decides what portion of the existing memory should be 
discarded. The output gate controls how much of the memory is revealed to the
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current output and subsequent computations. These gates operate through sigmoid 
activation functions, which produce outputs in the range of zero to one, enabling the 
network to weigh the influence of different components of the input and memory. 

Mathematically, the operation of an LSTM can be described by a series of equa-
tions. At each time step . t , the forget gate computes a forget vector . ft based on the 
previous hidden state .ht−1 and the current input . xt : 

. ft = σ(W f · [ht−1, xt ] + b f ), (8.15) 

where .W f and .b f are the weight matrix and the bias vector, respectively, and . σ is 
the activation function of the sigmoid. Similarly, the input gate generates an input 
vector . it : 

.it = σ(Wi · [ht−1, xt ] + bi ). (8.16) 

A candidate memory update .C̃t is computed using a hyperbolic tangent activation 
function: 

.C̃t = tanh(Wc · [ht − 1, xt ] + bc). (8.17) 

The current memory cell state .Ct is then updated as a weighted combination of the 
previous memory state .Ct − 1 and the candidate update: 

.Ct = ft � Ct−1 + it � C̃t, (8.18) 

where. � represents the multiplication in elements. Finally, the output gate determines 
the hidden state . ht , which is also the output of the LSTM for this time step: 

.
(ot = σ(Wo · [ht − 1, xt ] + bo),

(ht = ot � tanh(Ct ).
(8.19) 

This gating mechanism gives LSTMs the flexibility to learn when to store, update, 
or retrieve information, effectively mitigating the vanishing gradient problem that 
hinders traditional RNNs. The design enables LSTMs to focus on long-term depen-
dencies while retaining the capability to adapt to short-term changes. 

LSTMs have proven to be highly effective in a wide range of sequence modeling 
tasks. In natural language processing, they are frequently used for language mod-
eling, machine translation, and sentiment analysis. Their ability to model temporal 
dependencies has also made them a cornerstone in speech recognition and audio 
processing applications. In time series forecasting, LSTMs excel at predicting future 
values based on historical data, demonstrating their adaptability across domains. 

Although LSTMs address many limitations of basic RNNs, they are computation-
ally intensive because of their complex gating mechanisms. Training LSTMs on large 
data sets or long sequences can be resource-heavy, often necessitating optimization 
techniques such as gradient clipping or the use of specialized hardware like GPUs.
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Despite these challenges, LSTMs remain a dominant architecture for sequential data 
processing, and their design has inspired numerous extensions and variants, including 
gated recurring units (GRUs) and attention-based models. The principles underly-
ing LSTMs continue to influence the development of more advanced architectures, 
underscoring their foundational role in deep learning. 

Fun fact: In the early 2010s, the rise of graphics processing units (GPUs) 
finally gave LSTMs the computational power they needed to shine. GPUs 
enabled researchers to train larger models on more extensive data sets, and 
LSTMs became a core component of applications in natural language pro-
cessing, machine translation, and video analysis. 
A fun anecdote from this period involves Andrej Karpathy, a prominent AI 
researcher, who used LSTMs to train a character-level language model on 
the text of Shakespeare’s works. The LSTM learned to generate text that 
mimicked Shakespeare’s style, albeit hilariously nonsensical at times. For 
example: 

“Prithee, I shall with my heart, sir, and your friends”. a

a https://karpathy.github.io/2015/05/21/rnn-effectiveness/. 

Gated Recurrent Units (GRU) 

Gated Recurrent Units (GRUs) are a simplified variant of long short-term memory 
(LSTM) networks, introduced by Cho et al. in 2014 [ 5]. GRUs aim to address the 
challenges of modeling sequential data, particularly long-term dependencies, while 
reducing the computational complexity inherent in LSTMs. By streamlining the 
architecture, GRUs retain the ability to capture temporal patterns effectively but 
require fewer parameters and less computational overhead. This balance makes GRUs 
a practical choice for many sequence-based tasks in natural language processing, time 
series analysis, and speech recognition. 

The design of a GRU incorporates two primary gates: the update gate and the 
reset gate. These gates work together to regulate the flow of information through the 
network, determining which information to retain, update, or discard. The update 
gate controls how much of the previous hidden state is carried forward to the current 
state, balancing the preservation of long-term dependencies with the incorporation 
of new input. The reset gate determines to what extent the previous hidden state 
contributes to the generation of candidate activation for the current time step. This

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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mechanism enables GRUs to adapt flexibly to short- and long-term dependencies in 
the input sequence. 

Mathematically, the update gate . zt is computed as a function of the current input 
.xt and the previous hidden state .ht−1: 

.zt = σ(Wz · [ht−1, xt ] + bz), (8.20) 

where .Wz is the weight matrix, .bz is the bias vector and . σ denotes the activation 
function of the sigmoid. The reset gate . rt is similarly calculated: 

.rt = σ(Wr · [ht−1, xt ] + br ). (8.21) 

Using the reset gate, a candidate hidden state .h̃t is generated, which represents the 
contribution of the current input to the state: 

.h̃t = tanh(Wh · [rt � ht − 1, xt ] + bh), (8.22) 

where .� denotes element-wise multiplication, and .tanh is the hyperbolic tangent 
activation function. The final hidden state.ht for the current time step is then computed 
as a weighted combination of the previous hidden state and the candidate hidden state, 
mediated by the update gate: 

.ht = (1 − zt ) � ht − 1 + zt � h̃t . (8.23) 

This architecture simplifies the memory cell and gating mechanisms found in 
LSTMs by combining their roles into fewer components. The absence of a separate 
memory cell reduces the number of parameters, making GRUs computationally more 
efficient while retaining comparable performance. The gating mechanisms enable 
GRUs to adaptively control the influence of past states, providing robustness in 
learning both short- and long-term dependencies. 

GRUs have shown efficacy across a wide range of applications. In natural lan-
guage processing, they are widely used for tasks such as machine translation, text 
generation, and language modeling. Their ability to process sequential data effi-
ciently makes them suitable for real-time applications, including speech recognition 
and streaming data analysis. GRUs are also prevalent in time-series forecasting, 
where reduced computational requirements allow faster training on large data sets 
or deployment on resource-constrained devices. 

Although GRUs share many advantages with LSTMs, their streamlined design 
may make them less expressive in some scenarios, particularly when intricate long-
term dependencies need to be modeled. However, their computational efficiency 
and ease of implementation have made them a popular choice for many practical 
applications, particularly in cases where computational resources are limited or where 
training speed is a priority.
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8.9 Advanced Training Techniques 

Training deep neural networks effectively requires strategies to improve generaliza-
tion, mitigate overfitting, and ensure efficient convergence. Advanced training tech-
niques, such as dropout, batch normalization, and data augmentation, have become 
integral components of modern deep learning workflows. These techniques address 
challenges in optimization and model robustness by altering network behavior dur-
ing training or preprocessing input data. Their use has contributed to significant 
advancements in the performance and reliability of neural networks in a wide range 
of applications. 

Dropout is a regularization technique designed to reduce overfitting by randomly 
deactivating a subset of neurons during training. By preventing specific units from 
relying heavily on their neighboring activations, dropout encourages the network 
to learn redundant representations and fosters a more distributed encoding of fea-
tures. The technique introduces stochasticity into the training process, as neurons are 
dropped out independently with a predefined probability. During inference, dropout 
is deactivated, and the network uses the full set of weights, appropriately scaled 
to account for the absence of dropped units during training. This mechanism has 
proven particularly effective in reducing overfitting in large networks and improving 
generalization to unseen data. 

Batch normalization addresses the issue of internal covariate shift, where the dis-
tribution of inputs to a layer changes as the model parameters update during training. 
This phenomenon can slow convergence and make optimization challenging, par-
ticularly in deep networks. Batch normalization normalizes the activations of each 
layer by adjusting and scaling them to a standard distribution, based on the statistics 
of mini-batches during training. This normalization is followed by learnable param-
eters that allow the model to scale and shift the normalized values as necessary. By 
stabilizing the input distributions of intermediate layers, batch normalization enables 
the use of higher learning rates, accelerates convergence, and reduces the sensitivity 
to initialization. Additionally, it has a mild regularization effect by introducing noise 
from mini-batch statistics, which can further improve generalization. 

Data augmentation is a pre-processing strategy that enhances the diversity of 
training data by applying transformations to existing samples. These transforma-
tions, such as rotations, translations, cropping, flipping, or color jittering, simulate 
variations that might be encountered in real-world scenarios. Data augmentation 
allows the network to learn robust and invariant features without requiring additional 
data collection. In image recognition tasks, augmentation techniques such as random 
cropping and horizontal flipping have been particularly impactful, while in natural 
language processing, methods like synonym replacement and back-translation have 
proven useful. Augmentation not only increases the effective size of the training data 
set but also helps reduce overfitting by discouraging the network from memorizing 
specific data patterns. 

These advanced training techniques often complement each other, collectively 
addressing the multifaceted challenges of deep learning. Dropout and batch nor-
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malization operate directly on the network architecture, modifying the behavior of 
activations and weight updates to enhance learning dynamics. In contrast, data aug-
mentation enriches the input data itself, expanding the variability of the training 
set and helping the model generalize across diverse input distributions. Together, 
they represent a toolkit for optimizing training processes, fostering robust feature 
learning, and achieving superior performance in complex deep learning tasks. 

8.10 Network Architectures 

The evolution of deep learning has been driven by the development of diverse net-
work architectures, each tailored to address specific challenges and applications. 
These architectures go beyond traditional feedforward and convolutional designs, 
introducing novel mechanisms to process complex data types, enhance representa-
tional power, and generate new insights across domains. From the multiscale feature 
extraction of Inception networks to the representation learning capabilities of autoen-
coders and the dynamic attention mechanisms in Attention Networks, these models 
have redefined what neural networks can achieve. Generative Adversarial Networks 
(GANs) have opened new frontiers in content creation, while Graph Neural Net-
works (GNNs) have extended deep learning to non-Euclidean data structures like 
social networks and molecular graphs. Hybrid architectures combine the strengths 
of multiple models, creating versatile solutions for intricate tasks. Emerging trends 
in architecture design continue to push boundaries, integrating advances such as 
self-supervision, sparsity, and neuromorphic computing. This chapter explores the 
principles and innovations behind these architectures, highlighting their transforma-
tive impact on deep learning and their growing role in shaping research and real-world 
applications. 

Inception 

The Inception architecture, introduced by Szegedy et al. [ 6], represents a major 
innovation in convolutional neural network design. Its primary contribution lies in the 
Inception module, a carefully engineered structure that enables multi-scale feature 
extraction within a single layer. By allowing the network to capture information 
at varying levels of abstraction, the Inception architecture balances computational 
efficiency with representational power, making it a versatile choice for complex tasks 
such as image classification and object detection. 

An Inception module integrates parallel convolutional paths with varying kernel 
sizes. This design enables the module to simultaneously extract local features using 
smaller kernels, such as.1 × 1 and.3 × 3, and capture broader context with larger ker-
nels, such as.5 × 5. To manage computational costs,.1 × 1 convolutions are employed 
for dimensionality reduction, compressing feature maps before applying more com-
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putationally intensive operations. The pooling layers are also incorporated within the 
module to enhance the robustness and provide additional abstraction. By combining 
these parallel operations, the Inception module produces a rich set of feature maps 
that represent different levels of spatial hierarchy. 

The original Inception architecture, often referred to as GoogLeNet, demonstrated 
the utility of this approach by achieving state-of-the-art results in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) while using significantly fewer 
parameters than earlier deep networks like VGG. The success of GoogLeNet spurred 
further development, leading to improved variants of the Inception architecture. 
Inception-v3 introduced several enhancements, including factorized convolutions 
that decompose larger kernels into successive smaller ones, such as splitting a . 5 × 5
convolution into two .3 × 3 convolutions. This adjustment improved both compu-
tational efficiency and model performance. Inception-v3 also integrated batch nor-
malization into the auxiliary classifiers, stabilizing training, and further enhancing 
generalization. 

Inception-v4 and its related architecture, Inception-ResNet, continued this trajec-
tory by combining the strengths of the Inception module with residual connections. 
Residual connections, introduced in ResNet, alleviate the problem of vanishing gra-
dients in very deep networks by enabling shortcut paths for gradient flow. The inte-
gration of these connections into the Inception framework facilitated the training of 
deeper and more expressive models, extending their applicability to a wider range 
of tasks. 

The modular design of inception networks has contributed significantly to their 
flexibility and scalability. These networks can be customized to specific applica-
tions by varying the number and configuration of Inception modules. Their success 
has inspired adaptations in domains beyond image classification, including medical 
imaging, video analysis, and multi-modal data processing. The architecture exempli-
fies the power of combining multi-scale feature extraction with computational effi-
ciency, serving as a blueprint for subsequent innovations in neural network design. 
By addressing key challenges in deep learning, such as overfitting and computa-
tional constraints, the Inception architecture and its variants remain influential in 
both research and practical applications. 

Example 3 (Inception network) 
This code implements a Convolutional Neural Network (CNN) using Keras to 

classify images from the CIFAR-10 data set. The CIFAR-10 data are loaded, nor-
malized to the range [0, 1], and encoded with a hot digit for the 10 output classes. 

The model consists of several Conv2D layers with 64 filters and different kernel 
sizes (.1x1, 3x3, 5x5), followed by a MaxPooling2D layer for downsampling. 
After further convolution, the output is flattened and passed through a Dense layer 
with 10 units and a softmax activation function for classification. 

The network is compiled using the SGD optimizer with momentum, learning rate 
decay, and categorical cross-entropy loss. It trains for 10 epochs with a batch size of 
32, using the test data for validation, and prints the network summary, including its 
structure and parameter count.
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1 from  keras  .  datasets  import  cifar10  
2 from  keras  .  utils  import  np_utils  
3 from  keras  .  layers  import  Input  
4 from  keras  .  models  import  Sequential  
5 from  keras  .  layers  import  Conv2D  ,  MaxPooling2D  
6 from  keras  .  layers  import  Flatten  ,  Dense  
7 from  keras  .  models  import  Model  
8 from  keras  .  optimizers  import  SGD  
9 

10 (  X_train  ,  y_train  ),  (  X_test  ,  y_test  )  =  cifar10  .  load_data  ()  
11 X_train  =  X_train  .  astype  (’  float32  ’) 
12 X_test  =  X_test  .  astype  (  ’  float32  ’) 
13 X_train  =  X_train  /  255.0  
14 X_test  =  X_test  /  255.0  
15 

16 y_train  =  np_utils  .  to_categorical  (  y_train  )  
17 y_test  =  np_utils  .  to_categorical  (  y_test  )  
18 

19 

20 network  =  Sequential  ()  
21 network  .  add  (  Input  (  shape  =  (32  ,  32  ,  3)))  
22 network  .  add  (  Conv2D  (64  ,  (1  ,1)  ,  padding  =  ’same  ’,  activation  =’relu  ’))  
23 network  .  add  (  Conv2D  (64  ,  (3  ,3)  ,  padding  =  ’same  ’,  activation  =’relu  ’))  
24 network  .  add  (  Conv2D  (64  ,  (1  ,1)  ,  padding  =  ’same  ’,  activation  =’relu  ’))  
25 network  .  add  (  Conv2D  (64  ,  (5  ,5)  ,  padding  =  ’same  ’,  activation  =’relu  ’))  
26 network  .  add  (  MaxPooling2D  ((3  ,3)  ,  strides  =(1  ,1)  ,  padding  =’same  ’))  
27 network  .  add  (  Conv2D  (64  ,  (1  ,1)  ,  padding  =  ’same  ’,  activation  =’relu  ’))  
28 network  .  add  (  Flatten  ())  
29 network  .  add  (  Dense  (10  ,  activation  =’  softmax  ’))  
30 network  .  summary  ()  
31 

32 

33 sgd  =  SGD  (lr  =0.01  ,  momentum  =0.9 ,  decay  =0.001  ,  nesterov  =  False  )  
34 network  .  compile  (  loss  =’  categorical_crossentropy  ’,  optimizer  =sgd  ,  
35 metrics  =[  ’  accuracy  ’]) 
36 network  .  fit  (  X_train  ,  y_train  ,  validation_data  =(  X_test  ,  y_test  ),  epochs  =10  ,  

batch_size  =32)  

Listing 8.3 Inception network classification on Cifar10 data set 

Autoencoders 

Autoencoders are a class of neural networks designed to learn efficient represen-
tations of input data through an unsupervised learning paradigm. They consist of 
two main components: an encoder and a decoder. The encoder maps the input data 
to a lower-dimensional latent space, capturing its most salient features, while the 
decoder reconstructs the input from this compressed representation. The reconstruc-
tion process ensures that the latent space retains the critical information necessary 
to represent the input, making autoencoders particularly effective for tasks such as 
dimensionality reduction, feature extraction, and generative modeling. 

The simplest form, often referred to as a vanilla autoencoder, uses fully connected 
layers for both the encoder and decoder. During training, the network minimizes 
a reconstruction loss, typically the mean squared error between the input and its 
reconstruction. The encoder compresses the input into a latent vector of reduced 
dimensionality, and the decoder learns to map this latent vector back to the original
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input space. This structure forces the autoencoder to focus on the most important 
patterns in the data while discarding irrelevant noise. Despite their simplicity, vanilla 
autoencoders provide valuable insights into data structure and serve as a foundation 
for more complex variants. 

Variational Autoencoders (VAEs) extend the vanilla architecture by incorporat-
ing probabilistic principles into the learning process. Instead of mapping inputs to a 
deterministic latent vector, VAEs encode them as a distribution, typically modeled 
as a Gaussian. This allows VAEs to generate new data samples by sampling from the 
learned latent space, making them powerful tools for generative modeling. During 
training, VAEs optimize a combined loss function that includes both reconstruction 
loss and a regularization term, derived from the Kullback-Leibler divergence, to 
ensure that the learned distribution approximates the prior distribution. This proba-
bilistic framework enables VAEs to capture complex data distributions and generate 
realistic, diverse outputs. 

Autoencoders have found extensive applications across a range of domains. In 
denoising tasks, they are trained to reconstruct clean data from corrupted inputs, 
effectively learning to filter out noise while preserving essential features. This capa-
bility is widely used in image processing, where autoencoders restore degraded 
images or enhance their quality. In anomaly detection, autoencoders excel by learning 
a compact representation of normal data patterns during training. When presented 
with anomalous data, the reconstruction error typically increases, providing a clear 
signal for detection. This approach has been applied in areas such as fraud detection, 
industrial monitoring, and medical diagnostics. 

The versatility of autoencoders extends to other domains, including natural lan-
guage processing, where they have been used for tasks such as text compression 
and feature extraction. Their ability to model complex data distributions has also 
made them integral components in hybrid architectures, such as combining VAEs 
with adversarial networks to create more robust generative models. Autoencoders 
continue to play a significant role in advancing machine learning, offering a blend 
of theoretical elegance and practical utility that has influenced the design of modern 
neural networks. Their applications highlight their capacity to extract meaningful 
structure from data, making them indispensable in the broader field of representation 
learning. 

Attention Networks 

Attention networks represent a paradigm shift in deep learning, providing a mech-
anism to dynamically focus on relevant parts of input data while processing it. 
The attention mechanism was first introduced to address challenges in sequence-
to-sequence models, particularly in tasks like machine translation. By allowing the 
model to selectively weigh the importance of different input elements, attention 
networks overcome the limitations of fixed-length representations and improve the 
capacity to model long-range dependencies.
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At the core of the attention mechanism is the concept of assigning importance 
weights to elements of the input sequence. These weights are computed based on the 
relationship between the query, key, and value representations of the input data. The 
query identifies what the model seeks to focus on, the key helps evaluate relevance, 
and the value represents the information associated with each input element. The 
attention weights are computed by taking the compatibility score between the query 
and key representations, often using a dot product or other similarity measures, 
followed by a softmax function to ensure the weights sum to one. The resulting 
weighted combination of values serves as the attention output, enabling the model 
to aggregate relevant information dynamically. 

The Transformer architecture, introduced by Vaswani et al., builds on the attention 
mechanism to create a highly efficient and scalable model for processing sequential 
data. Transformers replace recurrent computations with self-attention, where each 
element of the input attends to every other element in the sequence. This design 
enables parallel processing, significantly reducing training time compared to recur-
rent networks. The key innovation of the Transformer lies in its multi-head attention 
mechanism, which allows the model to focus on different parts of the sequence 
simultaneously. By combining multiple attention heads, the Transformer captures 
diverse patterns and dependencies in the data. Additionally, positional encodings 
are incorporated to inject information about the order of elements in the sequence, 
compensating for the lack of recurrence. 

Applications of attention networks, particularly Transformers, have transformed 
natural language processing (NLP). Tasks such as machine translation, text summa-
rization, and sentiment analysis have seen substantial performance improvements 
due to the ability of attention mechanisms to capture complex syntactic and seman-
tic relationships in text. Pre-trained models like BERT, GPT, and T5, based on the 
Transformer architecture, have set new benchmarks in NLP by leveraging large-scale 
unsupervised learning to produce contextualized word representations. These mod-
els generalize well across tasks through fine-tuning, enabling efficient adaptation to 
specific applications. 

The versatility of attention networks extends beyond NLP to domains such as com-
puter vision and speech processing. In vision, attention mechanisms are employed to 
identify regions of interest in images, improving tasks like object detection and image 
captioning. In speech, attention facilitates alignment between input features and out-
put targets, enhancing models for speech recognition and synthesis. The conceptual 
simplicity and effectiveness of attention have made it a cornerstone of modern deep 
learning, driving innovations across disciplines and shaping the future of artificial 
intelligence. 

Generative Adversarial Networks 

Generative Adversarial Networks (GANs), introduced by Goodfellow et al., repre-
sent a powerful framework for generative modeling. GANs consist of two neural
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networks, a generator and a discriminator, that are trained simultaneously in a com-
petitive setting. The generator learns to produce data samples resembling the train-
ing data, while the discriminator attempts to distinguish between real and generated 
samples. This adversarial process leads to the refinement of the generator’s output, 
enabling the creation of realistic data samples across various domains. 

The architecture of GANs revolves around the interplay between the generator and 
the discriminator. The generator starts with a random input, often a vector sampled 
from a latent space, and maps it to the data space using a series of transformations. 
Its objective is to produce outputs that are indistinguishable from the real data. 
The discriminator, on the other hand, evaluates inputs to classify them as real or 
fake, providing feedback to the generator. This feedback, encoded as the gradients 
of the loss function, guides the generator in improving its output over successive 
iterations. The training process is framed as a minimax optimization problem, where 
the generator seeks to minimize the discriminator’s ability to identify fake samples 
while the discriminator maximizes its classification accuracy. 

Variants of GANs have emerged to address challenges in the original formulation 
and expand their applicability. Deep Convolutional GANs (DCGANs) introduced 
convolutional architectures into both the generator and discriminator, enhancing 
the ability to model high-dimensional data, particularly images. Wasserstein GANs 
(WGANs) redefined the loss function using the Earth Mover’s distance, improving 
training stability and addressing issues of vanishing gradients. Other adaptations, 
such as Conditional GANs (CGANs), allow the generation of data conditioned on 
specific inputs, enabling controlled synthesis in tasks like image-to-image translation 
and text-to-image generation (Fig. 8.6). 

GAN applications span a wide range of fields, with significant contributions in 
image generation, style transfer, and data augmentation. In image generation, GANs 
have achieved remarkable success in creating realistic faces, landscapes, and other 
complex visual content. Style transfer leverages GANs to transform images by com-
bining content from one domain with the stylistic elements of another, resulting in 
visually compelling output. In data augmentation, GANs generate synthetic training 
data to enrich data sets for tasks where data collection is limited or costly. Beyond 

Fig. 8.6 Generative adversarial networks architecture (by Janosh Riebesell, see: https://tikz.net/ 
gan/)

https://tikz.net/gan/
https://tikz.net/gan/
https://tikz.net/gan/
https://tikz.net/gan/
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these applications, GANs have been used in video generation, 3D modeling, and 
even molecular design, demonstrating their versatility. 

The impact of GANs extends beyond their immediate applications and influences 
the broader field of generative modeling. Despite challenges such as mode collapse 
and training instability, ongoing research continues to refine GAN architectures and 
training techniques, improving their robustness and scalability. GANs remain a cor-
nerstone of modern machine learning, bridge the gap between data generation and 
real-world creativity, and their influence is likely to grow as new innovations emerge. 

Fun fact: GANs were introduced in 2014 by Ian Goodfellow during a pivotal 
moment in machine learning history. The story goes that the idea for GANs 
came to Goodfellow during a late-night conversation at a bar with colleagues. 
They were discussing ways to improve generative models, and Goodfellow 
proposed the adversarial setup: a generator creating data and a discriminator 
evaluating it. 
Inspired, Goodfellow reportedly left the bar, went home, and coded the first 
version of GANs. Within days, he had a working prototype that demonstrated 
the potential of this new framework. This informal and almost spontaneous 
moment gave birth to one of the most influential ideas in modern AI. a

a https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/. 

Graph Neural Networks 

Graph Neural Networks (GNNs) are a class of neural networks specifically designed 
to process data represented as graphs, where entities are modeled as nodes, and their 
relationships are expressed as edges. Unlike traditional deep learning models that 
operate on grid-like data structures such as images or sequences, GNNs generalize to 
non-Euclidean domains, making them suitable for a wide range of applications where 
data is inherently relational. By leveraging the structure of graphs, GNNs effectively 
capture both the features of individual nodes and the dependencies among them. 

Graphs are mathematical structures that consist of a set of nodes and edges. In a 
graph representation, each node is associated with a feature vector that encapsulates 
its attributes, while edges often carry weights or labels representing the strength 
or type of the relationship. The adjacency matrix is a common representation of a 
graph, encoding the connections between nodes. GNNs extend this representation by 
learning embeddings for nodes and edges, which are updated iteratively to capture 
local and global graph structures. This process allows GNNs to encode the topology

https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/
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of the graph alongside node and edge attributes, creating representations that are 
suitable for downstream tasks. 

A pivotal advancement in GNNs is the development of Graph Convolutional 
Networks (GCNs), which generalize the convolution operation from grid-like data 
to graphs. GCNs aggregate features from a node’s neighborhood to compute an 
updated representation for the node. This operation can be viewed as a form of 
message passing, where information is exchanged between connected nodes to refine 
their embeddings. Mathematically, the aggregation process is often expressed as a 
weighted sum of the features of neighboring nodes, scaled by the adjacency matrix 
and normalized to account for variations in neighborhood size. Multiple layers of 
graph convolutions allow the network to propagate information across larger portions 
of the graph, enabling the modeling of both local and global dependencies. 

Applications of GNNs span diverse fields where graph-structured data plays a 
central role. In social networks, GNNs are used to predict user behavior, recom-
mend connections, and detect communities by analyzing patterns of interaction. In 
molecular analysis, they model chemical compounds as graphs, with atoms as nodes 
and bonds as edges, enabling tasks such as molecular property prediction and drug 
discovery. Beyond these domains, GNNs are employed in knowledge graphs for rea-
soning, in transportation networks for route optimization, and in cybersecurity for 
anomaly detection within network traffic. 

GNNs represent a significant step forward in machine learning, allowing the 
effective use of graph-based data across disciplines. While challenges remain, such 
as scaling to large graphs and preserving computational efficiency, ongoing research 
continues to refine GNN architectures and extend their capabilities. By integrating 
the relational structure of data into the learning process, GNNs have opened new 
frontiers in fields ranging from natural sciences to social analysis, underscoring their 
transformative potential. 

Hybrid Architectures 

Hybrid architectures represent a sophisticated approach in deep learning, combining 
the strengths of different neural network paradigms to address complex tasks that 
cannot be effectively handled by a single type of network. These architectures inte-
grate components such as Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) or fuse neural networks with symbolic reasoning frame-
works, enabling enhanced representational power, interpretability, and generalization 
across diverse domains. 

The combination of CNNs and RNNs is a prominent hybrid approach that lever-
ages the complementary strengths of these architectures. CNNs excel at extracting 
spatial hierarchies from grid-like data such as images, capturing features ranging 
from edges and textures to high-level object representations. RNNs, on the other 
hand, are designed for sequential data, modeling temporal dependencies and contex-
tual relationships. By integrating these two architectures, hybrid models can process
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spatio-temporal data effectively. For example, in video analysis, CNNs extract spa-
tial features from individual frames, while RNNs process these features sequentially 
to capture temporal dynamics, enabling tasks such as activity recognition and video 
captioning. Similarly, in medical imaging, CNNs analyze spatial patterns within 
scans, and RNNs aggregate these features over time to detect temporal trends in 
patient data. 

Another significant direction in hybrid architectures is neuro-symbolic integra-
tion, which seeks to combine the representational power of neural networks with the 
logical reasoning capabilities of symbolic systems. Neural networks are well-suited 
for learning from raw, unstructured data, capturing implicit patterns and represen-
tations. However, they often struggle with tasks requiring explicit reasoning, such 
as rule-based decision-making or understanding relationships in structured domains. 
Symbolic systems, in contrast, excel at encoding and manipulating explicit knowl-
edge but lack the ability to learn from data. Neuro-symbolic architectures bridge this 
gap by integrating neural networks for perception and representation learning with 
symbolic reasoning components for decision-making and inference. These systems 
have shown promise in applications such as knowledge graph reasoning, visual ques-
tion answering, and robotic planning, where both perception and logical reasoning 
are critical. 

Hybrid architectures provide a pathway for addressing challenges that traditional 
architectures cannot resolve independently. By combining different paradigms, they 
enable the modeling of multi-faceted problems, incorporating spatial, temporal, and 
logical components into a unified framework. This integration not only enhances task 
performance but also opens new avenues for research, such as explainable AI, where 
neuro-symbolic systems can offer insights into the reasoning processes underly-
ing neural network predictions. The development of hybrid architectures reflects the 
broader evolution of artificial intelligence, emphasizing the need for diverse, interdis-
ciplinary approaches to tackle complex, real-world challenges. These architectures 
are increasingly seen as a cornerstone for advancing both theoretical understanding 
and practical applications of machine learning. 

Emerging Trends and Research 

The field of deep learning continues to evolve rapidly, driven by innovative research 
and emerging trends that seek to address its limitations and expand its applicabil-
ity. Among the most prominent areas of advancement are few-shot learning, meta-
learning, and explainable AI, each representing a critical step toward creating more 
efficient, generalizable, and interpretable models. These directions aim to overcome 
challenges such as data scarcity, model adaptability, and the opacity of complex 
neural networks. 

Few-shot learning focuses on enabling models to generalize from a limited number 
of training examples, addressing the reliance of traditional deep learning methods 
on large labeled data sets. This paradigm seeks to mimic human learning, where
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individuals can acquire new skills or recognize novel concepts from minimal expo-
sure. Few-shot learning often employs techniques such as metric learning, where 
models are trained to compare inputs and infer similarities, or generative approaches, 
which synthesize additional data to augment learning. Applications span from med-
ical diagnostics, where annotated data is scarce, to natural language processing tasks 
like machine translation for low-resource languages. By reducing the dependency 
on extensive data sets, few-shot learning holds significant promise for democratizing 
access to deep learning across domains with limited data availability. 

Meta-learning, or learning to learn, represents another frontier in emerging 
research. Meta-learning frameworks aim to train models that can rapidly adapt to 
new tasks with minimal fine-tuning. This adaptability is achieved by optimizing 
over distributions of tasks rather than individual tasks, enabling models to extract 
shared knowledge and apply it efficiently to unseen scenarios. Meta-learning algo-
rithms often operate at multiple levels, with one learning process guiding another. For 
instance, the inner loop might optimize task-specific parameters, while the outer loop 
adjusts meta-parameters to improve adaptability. Meta-learning has proven valuable 
in robotics, where systems must quickly adapt to novel environments, and in few-shot 
learning settings, where task-specific data is limited. Its potential to create flexible 
and efficient learning systems underscores its importance in the future of artificial 
intelligence. 

Explainable AI (XAI) addresses one of the most pressing concerns in deploying 
deep learning systems: the lack of interpretability. As neural networks grow more 
complex, understanding their decision-making processes becomes increasingly chal-
lenging, particularly in high-stakes applications like healthcare, autonomous sys-
tems, and finance. XAI seeks to provide insights into how models arrive at their 
predictions, enabling users to trust and verify their outputs. Techniques for explain-
ability include feature attribution methods, which identify the contributions of input 
features to the model’s output, and surrogate models, which approximate the behav-
ior of complex networks using simpler, interpretable models. Advances in XAI have 
also led to the development of inherently interpretable architectures, which incor-
porate transparency into their design. The integration of explainability into deep 
learning workflows not only enhances trust but also facilitates debugging, fairness, 
and compliance with regulatory frameworks. 

These emerging trends collectively represent a shift in focus from maximizing raw 
performance to addressing fundamental challenges in scalability, adaptability, and 
transparency. Few-shot learning and meta-learning push the boundaries of data effi-
ciency and generalization, making deep learning accessible to new domains, while 
explainable AI fosters trust and accountability, critical for widespread adoption in 
sensitive and regulated industries. Together, they define the cutting edge of deep 
learning research, shaping its trajectory toward more versatile, ethical, and impactful 
systems. Their continued development will likely play a pivotal role in the evolution 
of artificial intelligence, ensuring its relevance and utility in addressing the complex 
challenges of the real world.
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Afterword 

This book, Pattern Recognition Primer, was intended as a detailed and systematic 
guide to understanding the key concepts, mathematical foundations, and practical 
applications of pattern recognition. By structuring the material from fundamental 
principles to advanced methodologies, our aim was to provide a cohesive narrative 
that equipped the readers with the tools to analyze and solve classification problems. 

The contents of the book covered a broad spectrum of topics. It began with an intro-
duction to essential terminology, feature selection, taxonomies, and quality metrics, 
setting the stage for understanding the processes that underpinned pattern recogni-
tion systems. The readers were guided through the mathematical fundamentals of 
the field, including statistics, probability theory, linear algebra, calculus, fuzzy logic, 
and dissimilarity measures, ensuring that even those with limited prior experience in 
mathematics could follow the concepts presented. 

The subsequent chapters investigated both unsupervised and supervised learning 
approaches. The book explored clustering techniques, including K-means, fuzzy 
and possibilistic clustering, hierarchical methods, and density-based approaches, 
with detailed discussions on quality metrics and validation methods. The section 
on supervised learning methods introduces foundational algorithms such as Fisher’s 
classifier, nearest neighbor methods, and various regression techniques, along with 
decision trees, support vector machines, and ensemble learning. 

Deep learning, an essential component of modern pattern recognition, was com-
prehensively addressed in the chapter on neural networks. The topics ranged from 
artificial neurons and shallow networks to advanced architectures such as deep con-
volutional and recurrent neural networks. The book also included a discussion of 
state-of-the-art training techniques and evaluation metrics, reflecting the rapid evo-
lution of the field. 

Throughout the book, the inclusion of Python code examples bridged the gap 
between theoretical understanding and practical implementation. Exercises at the 
end of each chapter further reinforced the material, allowing readers to consolidate 
their knowledge by applying it to real-world scenarios. 
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By systematically covering foundational concepts, a wide range of algorithms, 
and practical implementation strategies, Pattern Recognition Primer offered readers 
a thorough foundation in the intricacies of pattern recognition. It was our expectation 
that the material presented there would support the reader in developing a deep and 
functional understanding of the methods and techniques that drove this critical area 
of science and engineering. 
We wish all our readers a fruitful and inspiring journey in applying the knowledge 
they have gained. 

The Authors



Appendix A 
Exercises 

Fundamentals 

1 (Minimum distance) Based on the minimum distance classifier example calculate 
class centers, discriminant functions, and hyperplane for training data given as in 
Table A.1. 

2 (Multiclass minimum distance classifier) Use the minimum distance classifier for 
a multiclass problem as given in the Table A.2. In this case, please prepare three pairs 
of distinguish functions where each pair represents a function for set of a given class 
and the second one for each opposite object. 

3 (Quality metrics) Calculate the quality metric like shown in Table 1.6 for data 
presented in Table A.3. 

Table A.1 Minimum distance classifier training set for exercise 1.1 

.x1 .x2 .y .x1 .x2 . y

. −0.95 0.52 . −1 0.52 . −0.80 1 

. −0.80 0.53 . −1 0.70 . −0.30 1 

. −0.70 0.91 . −1 0.74 0.10 1 

. −0.50 0.43 . −1 0.41 0.20 1 

0.10 0.33 . −1 0.45 . −0.80 1 

. −0.30 0.05 . −1 0.97 . −0.30 1 

. −0.25 0.18 . −1 0.99 . −0.70 1 

. −0.60 0.18 . −1 0.67 . −0.45 1 

0.25 0.89 . −1 0.74 . −0.80 1 

0.40 0.95 . −1 0.06 . −0.70 1 
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Table A.2 Minimum distance classifier training set for exercise 1.1 

.x1 .x2 .y .x1 .x2 .y .x1 .x2 . y

. −0.95 . −0.8 1 . −0.75 0.75 2 0.52 0.52 3 

. −0.8 . −0.3 1 . −0.9 0.6 2 0.7 0.53 3 

. −0.7 . −0.1 1 . −0.25 0.5 2 0.74 0.91 3 

. −0.5 . −0.2 1 . −0.1 0.65 2 0.41 0.43 3 

0.1 . −0.8 1 . −0.5 0.8 2 0.45 0.33 3 

. −0.3 . −0.3 1 . −0.66 0.5 2 0.97 0.05 3 

. −0.25 . −0.7 1 . −1.0 0.8 2 0.99 0.18 3 

. −0.6 . −0.45 1 . −0.45 0.7 2 0.67 0.18 3 

0.25 . −0.8 1 . −0.1 0.9 2 0.74 0.89 3 

0.4 . −0.7 1 . −0.15 0.75 2 0.66 . −0.49 3 

Table A.3 Three doctors’ prediction compared to true condition of lung cancer 

Dr. Newton Dr. Einstein 

Condition Diagnosis Condition Diagnosis 

1 1 1 1 

. −1 . −1 . −1 . −1 

1 1 1 1 

. −1 1 . −1 . −1 

1 1 1 1 

. −1 1 . −1 1 

1 . −1 1 . −1 

. −1 . −1 . −1 . −1 

1 . −1 1 1 

1 . −1 1 . −1 

. −1 . −1 . −1 . −1 

1 1 1 . −1 

. −1 . −1 . −1 1 

. −1 1 . −1 1 

1 . −1 1 . −1 

. −1 . −1 . −1 1 

4 (Over and underfit) Use the training set to train the minimum distance classifier. 
Test the distinguish function on the testing set. Does the model overfit or underfit? 

5 (ROC curve) Calculate the ROC curve and AUC value of previous exercise for 
cutoff points: 4, 6, and 8 (Table A.4).
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Table A.4 Overfit and underfit example training and testing set 

.x1 .x2 .y .x1 .x2 . y

Training set 

. −0.95 . −0.8 . −1 . −0.66 0.5 1 

. −0.8 . −0.3 . −1 . −0.45 0.7 1 

. −0.7 . −0.1 . −1 . −0.1 0.9 1 

. −0.5 . −0.2 . −1 . −0.15 0.75 1 

0.1 . −0.8 . −1 0.5 0.25 1 

. −0.3 . −0.3 . −1 0.52 0.52 1 

. −0.25 . −0.7 . −1 0.7 0.53 1 

. −0.6 . −0.45 . −1 0.74 0.91 1 

0.25 . −0.8 . −1 0.41 0.43 1 

0.4 . −0.7 . −1 0.45 0.33 1 

. −0.9 0.6 . −1 0.97 0.05 1 

. −0.25 0.5 . −1 0.99 0.18 1 

. −0.1 0.65 . −1 0.67 0.18 1 

. −0.5 0.8 . −1 0.74 0.89 1 

. −1.0 0.8 . −1 0.66 . −0.49 1 

Testing set 

0.0 0.0 . −1 . −0.5 0.1 1 

0.25 0.3 . −1 . −0.3 0.25 1 

. −0.1 0.9 . −1 0.6 . −0.25 1 

. −0.1 . −0.5 . −1 1.0 . −0.3 1 

0.75 . −0.1 . −1 . −0.8 0.1 1 

Math 

6 (Combinatorics) Calculate the probability of a full house in poker. 

7 (Total probability) Let us take Manchester City, one of Premier League football 
club. What are the chances to win the Premier League Championship (event . B) if  
we know that: 

• .B|A1—we can win with a team from set .A1 for about 85%, 
• .B|A2—we can win with a team from set .A2 for about 65%, 
• .B|A3—the chances to win with a team from set .A3 is about 50%, 
• .B|A4—there are greater chances to lose as the chances of winning are about 40%? 

The size of the set is as follows: .A1 − 60%, A2 − 25%, A3 − 10%, A4 − 5%. 

8 (Standard deviation) We took five random newborns and took their weights. The 
weights are presented in Table A.5. The weight is obviously in kilograms. Calculate 
variance, average deviation, and standard deviation.
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Table A.5 Newborn weights
.x1 .x2 .x3 .x4 . x5

3.4 4.2 4.6 3.2 2.7 

Table A.6 Correlation 
between hours spent on 
running and calories burned 

Average 
hours 
spent on 
running 

0.2 0.5 1 1.5 2 

Average 
calories 
burned 

80 150 240 300 530 

9 (Correlation) While running we burn calories. An example of the relation between 
hours spend on running and burned calories are shown in Table A.6. Calculate the 
correlation. 

10 (Limits) Calculate following limits: 

. lim
dx→0+

2 + dx

dx
,

. lim
dx→−∞ 4x2,

. lim
dx→2

x3 + x2 + 2

3x2 + 3x + 2
.

11 (Derivatives) Calculate following derivatives: 

• . f (x) = x3 + 2x + 4, 
• . f (x) = sin(x) + 2, 
• . f (x) = 2x + ln x , 

for points .x = 2, .x = 4, and .x = 6. 

12 (Gradient) Calculate the gradient of function: 

. f (x1, x2) = x31 + 3x22 + 2x21 + 3x1 + 4x2 + 3

for points: 1, 4, and 5. 

13 (Dissimilarity measure I) Calculate the Minkowski, Manhattan, and Canberra 
distance between each of three given objects: . xa = (2, 5), xb = (10, 4), andxc =
(5, 6). 

14 (Dissimilarity measure II) Implement Canberra distance using Python.
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Clustering 

15 (Quality k-means) Modify the code of heterogeneity and homogeneity metrics 
to make it work with other methods than k-means. 

16 (3-means) Modify the HCM code to work for three groups. This exercise can be 
divided into four tasks: 

• modify the parameters, 
• modify the calculate_u function, 
• execute the clustering, 
• plot the results. 

17 (Density plot) For density clustering, plot the feature space with all elements 
marked with different colors depending on the cluster that it’s assigned to. You 
should do the following tasks: 

• fill the get_color method, 
• fill the plot code. 

18 (Plot dendogram) Build a method that plot is based on dendrograms_ 
history and pydot, a dendrogram for the divisive clustering method. You should 
base on agglomerative method, but keep in mind that it works top-down instead of 
bottom-up. This exercise needs just one function to be implemented: show_tree_ 
divisive. You should loop over the dendrogram_history variable and loop 
over child. 

19 (.s2 metric) Implement the .s2 metric. 

20 (Image segmentation borders) Draw the borders between clusters in the output 
image. 

Shallow 

21 (Ridge regression) Implement ridge regression using the equations shown in 4 
and the example of Lasso regression implementation. 

22 (Linear regression) Based on data given in previous exercise, calculate calories 
burned if we spent 3 hours running. Use linear regression for it.
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23 (Logistic regression) Based on example 5, calculate the logistic regression values 
for: 

. y = [1010101],

. X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3
1 0 3
1 1 4
1 1 1
1 0 4
1 1 0
1 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The values should be calculated for four iterations starting with a weights vector 
filled with 0. 

24 (Extended Fisher classifier) Add one more feature from the Iris data set and 
reduce the dimensionality to 2 dimensions. 

Decision trees 

25 (CART decision tree) Rewrite the CART method to use Gini index as shown in 
the lecture 

Gini index can be calculated with the following equation: 

.IG(X) = 1 −
m∑
i=1

p2i , (A.1) 

and 

.IG(feature) =
n∑

i=1

pi ∗ IG(Xi ). (A.2) 

You need to fill the calculate_gini function and change the “build” function 
a bit. 

26 (Draw C4.5 tree) Use pydot do draw the tree for C4.5 example 

27 (Implement the minimum number of objects pruning method) The MNO method 
checks the accuracy at each split and prune the node if the number of objects in a 
leaf is below a given value . N . Use the CART method first. 

28 (Plot OC1 tree) Instead of elements id, print the feature id it was split by. To 
make the task done, you need to change the function build_level and update 
the BinaryLeaf in two places to add the setters/getters and the feature and feature 
value split data.
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SVM 

29 (Implement the polynomial kernel) You need to extend the build_kernel 
function and implement the polynomial kernel if the kernel_type is set to poly. 
The equation that needs to be implemented: 

.K = (XT ∗ Y )d . (A.3) 

30 (Implement a multiclass C-SVM) Use the classification method that we used 
in the notebook and IRIS data set to build a multiclass C-SVM classifier. Most 
implementation is about a function that will return the proper data set that need to be 
used for the prediction. You need to implement: choose_set_for_label and 
get_labels_count. 

31 (One-class SVM) Implement one-class SVM using the cvxopt library. 

32 (.ν-SVM) Modify the C-SVM implementation to get the .nu-SVM implementa-
tion. 

Ensemble methods 

33 (Stacking using different classifiers) Please use the following classifiers: 

• Nearest Neighbors, 
• Linear SVM, 
• Decision Tree, 
• Naive Bayes, 
• QDA. 

Find the best combination. Use the specific classifier only once. 

34 (Modified boosting) Use the boosting method and change the code to fulfill the 
following requirements: 

• the weights should be calculated as: .w(t+1)
n = 1+I (yn �=ht (xn)∑N

i=1 1+I (yn �=ht (xn)
, 

• the prediction is done with a voting method. 

35 (RegionBoost) Change the original boosting method to add the regional objects 
(RegionBoost). 

Neural networks 

36 (Multilayer Perceptron) Combine a small network out of three perceptrons to 
solve the XOR (Table A.7). 

37 (Stochastic Gradient Decent for MLP) Build a small MLP network of two hidden 
layers. Use the SGD implemented in the linear regression section for training the 
network.
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Table A.7 XOR truth table Input A Input B XOR 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

38 (ResNet used to recognize numbers) Use the scikit-learn digit data set 
(load_digits()) and the ResNetV2 network from the Keras to recognize the 
digits in the data set. You can use the code example from the Inception section.



Appendix B 
Environment Setup 

We prepared the environment in the simplest possible way. It can be setup using a 
Python environment or a Docker container. 

Python configuration 

There are a small number of libraries that need to be installed, including typical 
libraries such as NumPy, pandas, keras, or scikit-learn. Some other libraries are used 
for drawing like matplotplib or pydot. 

1 numpy  ==2.2.0  
2 matplotlib  ==3.10.0  
3 simpful  ==2.12.0  
4 pandas  ==2.2.3  
5 pydot  ==3.0.3  
6 jupyter  ==1.1.1  
7 pillow  ==11.0.0  
8 scikit−learn  ==1.6.0  
9 tensorflow−datasets  ==4.9.7  

10 cvxopt  ==1.3.2  
11 keras  ==3.7.0  

Listing B.1 Required Python libraries 

System configuration 

For convenience, the code can be run using a Docker image. The configuration of a 
Docker image is given in Listing B.2. 

1 FROM  ubuntu  :24.04  
2 

3 ENV  TZ=  Europe  /  Warsaw  
4 RUN  ln  −snf  /  usr  /  share  /  zoneinfo  /  $TZ  /  etc  /  localtime  &&  echo  $TZ  >  /  etc  /  

timezone  
5 

6 ENV  LC_ALL  =C.UTF−8 
7 ENV  LANG  =C.UTF−8 
8 

9 RUN  apt  update  &&  apt  install  −y  python3−pip  vim  graphviz  pip  curl  unzip  
build−essential  unzip  vim  git  curl  wget  zip  

10 RUN  apt−get  update  &&  apt−get  upgrade  −y && apt−get  install  −y software− 
properties−common  

11 
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12 RUN  useradd  −ms / bin /  bash  springer  
13 RUN  adduser  springer  sudo  
14 

15 COPY  requirements  .  txt  /  home  /  springer  /  
16 

17 WORKDIR  /  home  /  springer  /  
18 

19 RUN  pip3  install  −−break−system−packages  −r  requirements  .  txt  
20 

21 CMD  jupyter  lab  −−ip  =0.0.0.0  −−allow−root  −−NotebookApp  .  token  =’’  −− 
NotebookApp  .  password  =’’  −−no−browser  −−notebook−dir  =/  home  /  springer  /  

Listing B.2 Dockerfile configuration 

It is an Ubuntu 24.04 LTS with Python and Jupyter. The Python packages are 
installed in same way as above. 

Repository 

The notebooks with code are stored in the GitHub repository: https://github.com/ 
kprzystalski/pattern-recognition-primer/.
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