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Genesis of This Book

The term Pattern Recognition is commonly used in different fields of science, engi-
neering, and a wide range of real-world applications. It is connected with machine
learning and is based on artificial intelligence methods dedicated to discoveries of
specific features—patterns in images, measurement data series, text files, biomedical
data of any kind (ECG, EEG, imaging data, DNA, etc.), data from real observations
in physical systems, and many others.

Pattern Recognition Primer explores mostly used classification methods in intelli-
gible way. Each method is deeply explained, so even non-scientist readers are able to
understand how it works. The book starts with an explanation of each basic statistical
and mathematical terms that are used in following chapters. Every chapter contains
easy to understand code samples. At the end of each chapter reader is able to do some
exercises on his own to consolidate knowledge. There are solutions to the exercises
provided in Appendix A so that the reader can compare results. Pattern Recognition
Primer is a book intended for students, teachers and everyone who would like to
understand how pattern recognition and machine learning works.

The concept of the book started during the preparation of the Ph.D. thesis
in machine learning by Karol Przystalski under the supervision of Prof. Maciej
Ogorzatek—some ten years ago (2014-2015). The majority of text books avail-
able at that time offered only a few classification methods that were explained in
a proper way. Many methods were typically briefly explained. In each textbook,
different methods were explained. This book attempts to explain from top to bottom
each method with all the needed details. Each method is further demonstrated in
Python and additional exercises. This is something that is missing from many machine
learning/pattern recognition books.

The reason for such a situation is that most of them are dedicated to readers with
some basic experience in this area. We want to introduce a book that is intended for
readers with no experience in machine learning at all.

Special and unique features of this book are:

e an overview of commonly used classification methods in one place,
e deep learning methods explained thoroughly,
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viii Genesis of This Book

e cach classification method is explained in detail,
¢ in this book, each statistical or mathematical aspect of each classification methods
is explained in details. This makes the understanding of each method easier.

What are the Benefits of This Book for the Reader?

This book is suitable for wide range of data scientists, machine learning engineers,
data analysts, academic teachers and especially for students. One of the advantages
of this book is that the reader is able to get a detailed explanation of each commonly
used classification method. Each method is presented in a easily to understand way by
using simple comparison examples and additionally ready to use examples written in
Python. Teachers can use it for their lectures/lessons and students to learn about clas-
sification methods. Each exercise have a solution that is described in the appendix to
the book. Additionally, ready to use examples written in Python are shown. Teachers
can use it for their lectures/lessons and students to learn about classification methods.

Full development and many changes to this book took almost ten years to
complete. This has been caused in large part by rapid changes observed in the
domain, extremely fast development of the area of deep neural networks and Al
and their booming applications. Unfortunately during the course of preparation of
the manuscript we lost our extremely precious collaborator Dr. Wiestaw Chemiel-
nicki. We miss his thoughtful comments and we wish to express our gratitude for
his important contributions especially to the SVM chapters. We express also our
gratitude to numerous colleagues and friends who gave us support.

We thank also our students who followed courses in Signal processing, Biometrics,
Machine learning and Neural networks and applications.
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Chapter 1 ®)
Introduction to Pattern Recognition Grest o

Pattern recognition has become a very popular buzzword over the last few years and
is widely used in many commercial solutions. In [1], we can find many trends for
2023. There are such trends as large language models, algorithms, deep learning, and
so on. Most of these trends are more or less related to the topic of this book. What is
important here is that for several years in each of these trend lists we can find many
references to artificial intelligence and pattern recognition. We predict an even more
comprehensive expansion of pattern recognition usage in the upcoming years.

Before we go deeper into some mathematical aspects of pattern recognition in
this chapter, we explain what pattern recognition and related terms are. A pattern
can be described in many ways. In [2] it is described as “opposite of chaos; it is an
entity, vaguely defined, that could be given a name”. The two best-known pattern
recognition types are image recognition and speech recognition. We use them on a
daily basis and sometimes don’t even know about them. Face detection in a camera
is an example of image recognition. Siri, which is part of each iPhone device, con-
tains speech-recognition algorithms. These are only two examples of a large set of
pattern recognition usage examples. A more detailed but not complete list of patterns
recognition usage cases can be found in [3].

1.1 Frameworks and Libraries

There are many free frameworks and libraries available. They are not new, as we have
had various solutions for more than 20 years. Solutions such as scikit-learn [4] or
Theano [5] were introduced in 2007 and 2008, but there are some libraries that were
introduced even earlier [6, 7]. More and more solutions are introduced each year. So
far, we have more than 100 solutions. Many of them have been introduced over the
last ten years [8—11]. A list with a short description is presented in Appendix C. In this
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book, we decided not to use any framework or library unless it is totally necessary. We
do not want to focus on any specific solution, as the goal is to learn how some methods
work and not how to use scikit or any other solution. There are many books in which
such solutions are explained in depth [5, 12-21], but in most of them the methods
are not explained well and the focus is more on library/framework explanation. In
some cases, machine learning methods are treated as a black box with a superficial
explanation of each. In our opinion, anyone who wants to start with machine learning
should understand how the methods work inside in the first place, and then use a
library/framework of one’s own choice. This should provide a better understanding
of how to use a given method, set the right parameters, and finally choose the right
method for a given problem. We use, whenever possible, a non-vectorized approach.
Itis slower but in our opinion easier to understand for beginners. The only exception is
the neural network chapter, as the presented examples are more complex. Calculating
it without using TensorFlow or other solutions that are polished for such cases would
take too long.

1.2 Terminology

Artificial Intelligence is about algorithms that behave like intelligent human beings.
Steven Spielberg’s A.1. (2001) movie presents robots that behave like humans. Almost
like humans. Such robots as shown in the movie are still more fiction than science.
There are some advanced robots such as Nadine [22], which looks and, in some
situations, behaves like a human. Currently, the main part of the car building process
is automated. Robots replaced humans in building cars by using algorithms that are
usually developed to perform only one task. Such algorithms are not thought to learn
to do new tasks on their own. It is hard to call them intelligent. Alan Turing is known
to be the godfather of artificial intelligence. He proposed a test [23] called his name
that can be used to distinguish whether an algorithm/method is artificial intelligence.
It uses a chat interface to measure it. A human is having a conversation with someone
else on the other end. He does not know if it is an algorithm or a human with whom
he is talking. The algorithm passes the test if the human cannot distinguish whether
he is talking to a human or not. Passing the test means that an algorithm can be
considered as artificial intelligence.
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Fun fact: McCarthy coined the term Al in 1955 in connection with a proposed
summer workshop at Dartmouth College, which many of the world’s lead-
ing thinkers in computing attended. In 1965, McCarthy became the found-
ing director of the Stanford Artificial Intelligence Laboratory (SAIL), where
research was conducted into machine intelligence, graphical interactive com-
puting, and autonomous vehicles.”

¢ https://engineering.stanford.edu/news/stanfords-john-mccarthy- seminal-figure-
artificial-intelligence-dead-84.

Machine learning is very often mistaken for pattern recognition, deep learning, or
artificial intelligence. The reason why these terms are used as synonyms is that they
all have a lot in common and are easily generalized, especially by anyone without
knowledge of the differences. There are many definitions of machine learning. A short
list of different definitions can be found in [24]. In fact, machine learning is the crucial
part of the pattern recognition process. We will come back to this process later in this
chapter. Machine learning is about algorithms that learn a new behavior based on
given data. We are able to teach the algorithm so that it can predict the cases unknown
before. The prediction process is also known as classification. There is a huge set
of such algorithms, which are called classification methods. Implementations of 17
families are analyzed in [25] 179 classification methods. The following chapters are
about classification methods that are the main part of the pattern recognition process.

Data science is about obtaining value from the data. Sometimes it is also called
data analysis or data mining, but data science is a bit more general. Drew Conway
during one of O’Reilly’s conferences proposed a diagram in which he focused on
the skills that are needed to become a data scientist [26]. It comprises three different
skills (see Fig. 1.1). First, to analyze the data, we need statistical and mathematical
knowledge. Second, we need to have computer science skills as we need to know
how to collect and proceed with the data. Third, we need to have domain expertise to
know what we are analyzing. Data scientists are developers who extract knowledge
or useful information that is not given strictly in large amounts of data.

For a couple of years big data has become a popular term to describe solutions
in which a large amount of data is processed in parallel. Especially big data-based
learning has started to be widely used in recent years [27]. There are good examples
in e-Commerce solutions like Amazon where all users actions are saved and analyzed
for recommendation systems and further financial and inventory predictions. Google
uses images to build methods that are used in Google Photos. BMW and Tesla
use car sensors to build autonomous cars. There are also many other examples; for
now, mostly larger companies use big data for prediction, but there have been many
startups showing up in this area recently. The opposite of big data is small data. Most
pattern recognition problems are still based on small data. It is difficult to distinguish
between small and large data. The very loose difference is in parallel computation.
A more detailed comparison between small and large data can be found in [28].
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Fig. 1.1 Data Science with references to other terms known as Data Science Venn Diagram.
Source https://drewconway.com/zia/2013/3/26/the-data-science- venn-diagram

1.3 The Process

To find a pattern on an image, we need to follow the process that is divided into a few
steps. In the following process, we simplify it to a binary classification problem of
iris cancer. This means that we can have a data set of images of malignant or benign
cases. Each pattern recognition case is individual, but each consists of some steps
that are the same in each case:

1. Assemble data. In this step, we are collecting the data [29]. This part can be
difficult in some cases, especially if we want to solve a specific, complex and
difficult to predict problem, such as one of the medical classification problems.
Another issue related to the data collection part is the quality of the data. We
should not start the next step if we have only images of healthy irises or if the set
of malignant images is only a small percentage of the whole database. There will
be no meaningful results. The perfect scenario is to have a ratio from malignant
to benign cases of 50% each. At the same time, in most cases the database should
not be small like 50 cases in total. In the case of classification problem with more
than two possible prediction labels, each label data set should be equal in the best
case. A robust algorithm should generalize the problem. Bigger database makes it
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possible for such an algorithm to generalize better. We explain the generalization
more thoroughly in this chapter, while we go into detail with specificity and
sensitivity.

2. Data preprocessing. If we have a data set of images, we usually need to do some
image processing work before we start the feature extraction or training part.
Image-processing work can be noise reduction, image scaling, or other similar
actions that make the input data have the same format. This kind of work applies
also to other data sets such as sound or text.

3. Feature extraction. As soon as we have our database of malignant and benign
cases, we should extract features from each image. Doctors use some charac-
teristics of an iris melanoma to make a diagnosis. Most methods need more
“computer-friendly” information. The feature types are explained in the next
section of this chapter. To simplify again, we need to transform the characteristics
used by physicians into a numerical form. Image processing is commonly used
for feature extraction if we deal with images. Using it, we can easily measure the
asymmetry of the iris shape. Asymmetry can be one of the features. The goal in
this phase is to create a vector of features. Building the feature vector by feature
extraction is very specific to each classification problem. Plenty of ideas on how
to make it efficient for a given problem have been published in [30].

4. Feature selection. The features we extracted should usually be normalized. How
we should do this depends on the implementation of the classification method.
In most cases, we normalize the feature value to be in the range of 1 and —1. It
is important to do so because sometimes the feature vector consists of too many
features and before we go to the next phase we select only the best features.
There are many methods [31] to check the quality of the features and its impact
on the overall classification result. We describe a few of these later in this book.
Feature selection is significant for a few reasons. Reducing the number of features
increases performance. In other words, it makes the training part happen faster.
Each additional feature brings another dimension to our classification problem.
Increasing the dimensionality is good to some extent, because if the dimension is
too high, we will lose the generalization of our algorithm and finally the prediction
success rate [32]. It is explained in more detail later in this chapter. The feature
selection part is not needed for some deep learning methods where almost pure
data are used as the input.

5. Training. This part is called the training or learning phase. Depending on the
type of classification method used, this part can be skipped. We will describe the
types of classification methods in more detail later in this chapter. The goal of the
learning part is the model. It’s build with using training data set. In [24] the
model is described as nothing more than the result of applying an algorithm to a
data set and is usually a representation of the data. Later, we will describe how
to properly prepare a training data set. During the training part, the algorithm
is learning how to predict the given data set. To simplify, we can say that the
algorithm sets the parameters to a value that gives the highest accuracy for the
given data set. These parameters are different depending on the method used.
Some parameters can be set by us before the learning part starts.
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6. Prediction. This is the essential part of the whole process. In this phase, we take
the model and execute our prediction on the test data set. Our algorithm returns
the predicted label for each feature vector. Although it is the crucial part, in most
cases it takes much less time than other parts of the process.

7. Validation. Some models and predictions are better than others. It depends on
many aspects. We have mentioned how the data set should be collected, what
kind of features we extract, what feature we select, what classification method
and parameters are used, etc. Good practice is to run the training and prediction
phase with different parameters and different classification methods. This allows
us to get a wider overview and choose the best methods from the set that we have
checked. In addition, some measurements are available to check the quality of
the prediction results. Some are described in more detail later in this chapter. It
is important to note that we should have a validation data set to verify the model
on a data set that was never used before for training or testing. We explain it in
more detail later in this chapter.

We can also report our results and publish them, but it is not mandatory for obvious
reasons. The process can also be described in a shorter way than in [33] or [3].
In later chapters, most methods are supervised to fully cover the process explained
above. Methods in which feature selection is usually done during the training and
the next validation are unsupervised. The reason for this is the lack of labels in the
data sets. When it comes to deep learning, we usually skip parts of feature extraction
and selection, since the data given in deep learning methods are in many cases raw
data. Deep learning methods are also used to discover features during training. We
explain it more extensively in the last chapter. Reinforcement learning also works a
bit differently and does not exactly fit the explained process.

1.4 Features

There are a few terms related to features in pattern recognition. In the beginning, we
describe the data collection and feature extraction in more detail. Next, we focus on
a feature vector and a feature space. At the end of this part, we describe the kinds of
feature that we have.

Data collection and feature extraction are usually the most time-consuming part.
The approach in both cases is individual for each classification problem. Let us con-
sider two examples. If we want to analyze the customer behavior of an e-Commerce
solution, we would need to set up an infrastructure of servers with solutions like
Apache Flume or similar. In the event of a medical problem, such as bone cancer, we
need to collect X-ray images, usually directly from a doctor’s medical database. For
each problem, different features need to be extracted. For our e-Commerce exam-
ple, we can extract such features as the operating system used by the customer, the
country of the customer, how often she/he buys a product, etc. In case of a bone
cancer detection problem, our feature vector can consist of bone symmetry, fractal
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box dimension value, differences in the image during a time slot, etc. A feature vector
consists of at least two features. It can be mathematically described as follows:

Xi = [Xi1, ..., xim]T €R, wherei =1,...,n. (1.1)

We have n feature vectors x;. It consists of m features x;1, ..., x;. The number
of features m depends on the problem to be solved and how the features affect
the accuracy. Each additional feature increases the dimension of the problem to be
solved. It is called feature space. The feature space is two-dimensional if we have
two features, three-dimensional in the case of three features, and so on. We show a
few examples later in this book.

As shown in two previous examples, the features can differ from each other.
Depending on the classification problem, we can deal with different types of feature.
In [34] a taxonomy of features is presented (see Fig. 1.2). We have two main types
of features: quantitative and qualitative. Qualitative features are those with a small
number of possible values. Quantitative features have a number of possible values.
Let us take a few examples to get a better understanding. If we want to predict brain
cancer only on the basis of MRI images, then one of our features would probably be
the asymmetry. Without using more sophisticated methods such as fractal methods
to measure the asymmetry, we would say that there are four possible values. We can
say that the brain on the images is symmetric, x-axis asymmetric, y-axis asymmetric,
or completely asymmetric.

In 1983 the Detroit Pistons won against the Denver Nuggets 186—184. This game
is known as the one with the highest score in the NBA so far. Usually, the scores
are somewhere between 80 and 120, but we cannot exclude a score that is lower or
greater. Let us assume that we would like to take the best score of a team as one of
our features to predict who will be the NBA Champion this year. We would need to
consider a wide range of values.

In 1986 we witnessed the Chernobyl nuclear reactor disaster. It happened because
of the lack of well-prepared security procedures. Since then, many security proce-
dures have been introduced to avoid this kind of situation in the future. Let us imagine

Continuous-valued (length, pressure)
_

Quantitative (numerical)

/ Discrete (total basketball score)

Feature types

\ Ordinal (education degree)
_

Qualitative (categorical)
—

Nominal (profession, make of a car)

Fig. 1.2 The feature taxonomy proposed in [34]
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that we want to build a classifier that will be able to predict such a situation. One of
the most important features would be the temperature within the reactor. The range
is also quite wide in this case.

Fun fact: Children typically begin recognizing letters between the ages of 2
and 4, with significant individual variation. By age 2, many children can sing
or say aloud the “ABC” song. Around age 3, they may recognize about half
the letters in the alphabet and start to connect letters to their sounds. By age
4, children often know all the letters of the alphabet and their correct order
[35].

A classifier needs a feature vector consisting of values that are readable for it.
This means that we need to convert our feature values to a numerical value. Few
commonly known methods are used for making this happen, such as discretization,
approximation, or just simple value assignment. The asymmetry described above can
be represented as follows:

e symmetry as 1,
e y and x axis asymmetry as 0,
e completely asymmetry as —1.

In this example, we assign a value for each case. We assumed here that the x- or
y-axis asymmetry does not make any difference in setting the diagnosis. Some other
features need to be represented by a number of a range. Return to our example of skin
cancer. In skin cancer, some scoring methods are used when making the diagnosis,
taking into account the age of the patient. This is because the probability of skin
cancer increases with age. Hunter score [36] divides the age factor into a few ranges
such as 0-20, 20-30, etc. As a feature, we need to assign each range a value that will
be used next in the classification. If we have a bunch of values divided into ranges, we
can gain a better generalization of a given feature. In the case of education degrees,
we can assign a value to each degree. For the NBA example, it is even easier since
the score is already a number.

Classification

In this part, we discuss the classification problem. The goal is to understand how a
machine learning algorithm works. The fundamental part of each term mentioned
above is the classification methods. It does not matter whether we predict the stock
market or an illness based on historical data; we always have to solve a classification
problem. From a mathematical point of view, it can be described as follows:

D:R" - Q. (1.2)
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fa—

(a) Benign skin lesion (b) Malignant skin lesion

Fig. 1.3 Example of a medical classification problem. The differences of benign (a) and malignant
(b) skin lesion are shown on the dermatoscopy images. Source [37]

D is our set of classifiers if we have 3 ensemble classifiers (see Chap. 7). R" is a
n-dimensional space of features, where n is the number of features in the feature
vector. €2 is the set of labels wy, ..., ®,. Some classification problems can be solved
with one classification method d;, but in some cases an ensemble of classifiers D
must be constructed. A label is also known as a class or a group.

Example 1 (Skin moles) Let us take an example. In Fig. 1.3 we can see an example
of a skin mole. Dermatologists use scoring methods to establish a diagnosis. Let us
take into account only two features: asymmetry (x;) and number of colors (x;). If we
take three random cases of cancer and benignity and draw a graph, then it might look
like in Fig. 1.4. The red and blue marks are our classes: benign and malignant. The
green case is a new one, in which we do not yet know whether it is a benign mole or a
cancer. Proven cancer cases are marked red and benign blue on the chart. In addition
to how dermatologists diagnose cases, we can see that cancer cases are just moles
of many different colors or high asymmetry. The benign moles are symmetric and
consist of fewer colors. If we are asked to draw a straight line between malignant and
benign moles, it might look like a dashed line in Fig. 1.4. For us, it is clear where the
boundary between cancer and benign is, but let us assume that we have a database
of 500 moles with 100 cancer, 250 benign, and 150 other disease cases. In the real
world, in many cases, it is difficult to distinguish cancer from benign moles, even by
experts [38]. The linear classification problem shown in Fig. 1.4 rarely occurs. Most
classification problems are more complex. Let us take a look at the next example,
which is a little more complex.

Example 2 (XOR) Exclusive OR is a commonly known logical operation. It can be
written as follows: p @ g = (p V ¢) A =(p A g). Consider XOR as a classification
problem in which both logical values are our features x; and x,. The result of the
XOR operation will be our label (y) as shown in Table 1.1.
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Fig. 1.4 Simple binary classification problem with two features: asymmetry (x;) and number of
colors (x7)

Table 1.1 XOR result of two X1 X y
logical statements x| and x; 0 0 0
1 0 1
0 1 1
0 0 0

We can draw a simple graph of the data shown in Table 1.1 as shown in Fig. 1.5.
It is not possible to draw a straight line like we did in the previous example. We
need to draw the line in the shape of an ellipse or something similar to distinguish
between two classes. This means that it is a non-linear classification problem. Most
real-world-based classification problems are rather non-linear. Most examples shown
in this book are non-linear classification problems.

Before we move on to more difficult topics, we need to explain how a classification
method works. We choose the minimum-distance classifier. It is a simple classifier
that is also used in many other publications to show the big picture of training with
machine learning methods [39]. There are a few terms that need to be explained here.
We show a few functions that look similar but have a different name and do something
else. The first function is the discriminant function. For a minimum distance classifier,
it can be written as follows:

gr(x) = ZmZx — m,?mk, (1.3)
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Fig. 1.5 A non-linear
classification problem of
logical XOR operation. The
features x| and x, are two
logical statements given as
input to the XOR operation
False A a
(]
=
True i a
True False
X1

where g (x) is a function that at the end tell us which class a given x should be
assigned to. It is calculated for each class k. We need to compare all the values of
gr(x). We assign the class k for the highest value of g (x). In this equation, we have
my, which is the center of input values of a specific k class. Centers can be calculated
as the average number of points of a given class:

_xx

ng

(1.4)

myg

where n;, is the number of training data sets for the label k. The function that allows
us to draw a line between classes can be written as follows:

gx) =gi(x) —g;j(x) =0, (1.5)

where g;(x) is the discriminant function of each class. The function g(x) is also
known as a decision function. The line is also known as the decision surface or
hyperplane. If we inject our discriminant functions into the above equation, we get
our g(x) function as follows:

gx) = 2(miT — mjr)x + m]ij — mle, (1.6)
Example 3 (Minimum distance classifier) We prepared a training data set of 20

feature vectors, ten for each class. It looks like shown in Table 1.2. Our feature space
looks as shown in Fig. 1.6. We don’t need to calculate anything to see that it is a
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Table 1.2 Minimum distance classifier training set example

X1 X7 y X1 X2 y
—0.95 —0.80 -1 0.52 0.52 1
—0.80 —0.30 -1 0.70 0.53 1
—0.70 0.10 -1 0.74 0.91 1
—0.50 0.20 -1 0.41 0.43 1
0.10 —0.80 -1 0.45 0.33 1
—0.30 —0.30 -1 0.97 0.05 1
—0.25 —0.70 -1 0.99 0.18 1
—0.60 —0.45 -1 0.67 0.18 1
0.25 —0.80 -1 0.74 0.89 1
0.40 —0.70 -1 0.06 0.49 1
Fig. 1.6 Minimum distance 1 A
example data set shown in
two dimensional feature
space. Centers of each 0.5 A 280
label/class are filled . A
) O ] A 4
ER :
g
ha O O
-0.5| 0nom -
m] O
O oo
1 \
-1 -0.5 0 0.5 1

feature 1

linear classification problem. We could easily draw a line between the red and blue
points, but how does the classifier do it?

First of all, we need to calculate the center points of each class. The average of
each point would be as follows:

m_y = [~0.335 —0.455],m, = [0.625 0.451].

We can implement two methods to calculate the centers of two label data sets (see
the Listing 1.1). In calculate_centers we calculate the m_; and m, centers.
We go through the feature vectors by label and calculate the average values of x;;
and x;, of each class.

def calculate_centers():
unique_labels = np.unique (labels)
centers = []
for label in unique_labels:
centers.append(dataset [labels==1abel] .mean(axis=0))
return centers

Listing 1.1 Minimum-distance classifier label center calculation
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Both centers are marked with a filled square and triangle sign in Fig. 1.6. The next step
is to calculate the discriminant functions for both classes. Please, keep in mind that
our feature vector x can be written as a matrix of two features [x1 xz]. Discriminant
functions for our example are calculated as follows (Eq. 1.3):

o B x| r 3 -0.335] _
g-1(x) =2-[—0.335 —0.455] - [m} [—0.335 —0.455] - [_0.455} =
= —0.67x;; — 0.91x;, — 0.31925,

— Xil 0.625|
gi1(x) =2-[0.625 0.451] - [m} —[0.625 0.451] - [0_451} =

= 1.25x;; + 0.902x;, — 0.594026.

We used two methods to implement the discriminant function for each class. It is
shown in the Listing 1.2. calculate_discriminant_function method is
used to calculate the parameters of the discriminant functions. To obtain the value of a
function, we need touse the calculate_discriminant_function_value
method. It obtains the number of test vectors and calculates the discriminant value
for a given label label_iter.

def calculate_discriminant_function():

function_var_values=[]

bias = []

for center in centers:
print (center [0])
function_var_values.append(center [0]%2)
bias.append(np.matmul (center,center.T))

return function_var_values, bias

Listing 1.2 Minimum-distance classifier labels discriminant function values calculation

For now we have our two discriminant functions and centers calculated. Only the
distinguishing function needs to be calculated. Let us put our results into Eq. 1.6 to
get it:

. [-0335] [0.625]. [xn], [0.625
§0) = 2([—0.455] - [0.451]) ' [m] + [0.451} [0.625 0.451] —

_ [-0.335
—0.455

:| . [—0.335 —0.455] =0.
Finally, we get the following function:
g(x) = —1.92x;; — 1.812x;5 + 0.274776 = 0.
The function g(x) parameters calculation can be implemented as shown in the

Listing 1.3. We have only one method, called calculate_hyperplanein which
we take the centers of both labels and calculate the parameters as shown above. This
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method returns two parameters, which in the current example is [—1.92, —1.812]
and a bias that is 0.274776. Later in this book, we explain the hyperplane and deci-
sion function in more detail, as both are commonly used as terms that distinguish
between classes.

def calculate_hyperplane():
hyperplanee_variables = centers[0]
for i in range(l,len(centers)):
hyperplane_variables=np.subtract (hyperplane_variables,bcenters[i])
hyperplane_bias=np.dot (centers[len(centers)—1],centers[len(centers)
—11.T)
for i in reversed(range(0,len(centers)—1)):
hyperplane_bias=np.subtract (hyperplane_bias, np.dot(centers[i],
centers[i].T))
return hyperplane_variables#*2, hyperplane_bias

def get_hyperplane():

denominator = np.array(hyperplane_vars).ravel () [0]
features = np.array(hyperplane_vars).ravel() [1:]
points = []

print (denominator)
for cut_point_id in range(len(cut_points_y)):

numerator = 0
for feature in features:
numerator = numerator + np.dot(feature,cut_points_yl[

cut_point_id])
points.append ((numerator+hyperplane_bias)/—denominator)
return points

Listing 1.3 Minimum-distance classifier discriminant function values calculation

The above function is shown in Fig. 1.7 with a dashed line.

Now, let us take two random feature vectors from testing data set: x,; = (0.4, 0.1)
and x; = (0.1, —0.4). To get the prediction, we need to calculate both the discrimi-
nant function values. For the first vector, we have both discriminant function values

as follows:
g_1 = —0.268 — 0.091 — 0.31925 = —0.67825,

0.5 4 0.0902 — 0.594026 = —0.003826.

81 =
Fig. 1.7 Minimum distance 1 "
example with hiperplane
marked with gray dotted line .
and two example vectors of 0.5 o P
ot a Q A
testing data set . O . j
S0 4
m] ]
-0.5 0.
O O
O 0o
-1
-1 -0.5 0 0.5 1
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The prediction is the class where the value of the discriminant function is higher.
We see that for the vector x,; the predicted class is 1. Compare it with our second

vector xps:
g1 = —0.067 + 0.364 — 0.31925 = —0.02225,

g1 =0.125 — 0.3608 — 0.594026 = —0.829826.

In this case, the predicted class is —1. A quick look at Fig. 1.7 shows that the pre-
diction went well. In the Listing 1.4 the implementation of the prediction method is
shown. It is about getting two discriminant function values and comparing both. The
label is assigned with the highest value of the discriminant function. It is shown on
line 9 of the Listing 1.4.

def predict():
prediction=[]

unique_labels = np.unique(labels)
for test_id in range(len(test_set)):
best = []

for label_id in range(len(unique_labels)):
best.append(np.dot(discriminant_variables[label_id],np.array
(test_set[test_id]))—bias_variables[label_id])
prediction.append(unique_labels[np.argmax(best)])
return prediction

Listing 1.4 Minimum-distance classifier prediction

So we learn our first classification method. Before we go into the next classification
methods, we need to introduce several mathematical and statistical terms.

1.5 Taxonomy

In this section, we focus on the different types of machine learning methods. There are
many machine learning methods, and for someone new to pattern recognition, it can
be difficult to understand the relations between methods and types of methods. We
have divided this section into two parts. In the beginning, we present the related work.
We present the most interesting taxonomies that have already been published. The
goal of this section is to show the differences between the types of machine learning
methods in an efficient way. We want to cover all methods, but it is not really possible,
because of the number of methods. That is why we propose a taxonomy that should
be much easier to understand for someone who is new to pattern recognition. This
is what the second part of this section is about.

Past works

There are some types of method that are so popular that they are repeated in each
book on machine learning. So far many taxonomies have been introduced. Most are
complementary to each other, but are shown from different points of view. Consid-
ering how the discriminant function approach works, we can divide the methods
as shown in Fig. 1.8. This taxonomy consists of four major types: similarity-based,
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probability approach, decision boundaries, and combined classifiers. We have already
explained the similarity and probability theory that are used in classifier methods.
Decision boundaries and combined classifiers are explained in next chapters. The
methods shown in Fig. 1.8 are just a few of the entire list of classification methods.
The nearest mean is also known as the nearest centroid or Rocchio classifier. Cal-
culate the centroid of each class from the training data and assign the label where
the centroid is closest to a new element from the test data set. Template matching
is strongly related to image processing methods. It matches the templates defined
in the images. Learning Vector Quantization (LVQ) is also known as a Kohonen
network or Self-Organized Map (SOM). It is a type of neural network based on data
without the knowledge of class assignment. It is the neural network that classifies the
similarity of elements without prefixed templates or patterns. Linear Discriminant
Analysis is also known as Fisher’s classifier or Fisher’s linear discriminant. As can
be inferred from the name, it is a linear classifier. It is a simple classifier that can
be compared to linear regression. It can also be used for dimensionality reduction.
The dimensionality problem is explained in Chap. 4. QDA is known as Quadratic
Discriminant Analysis or Quadratic Classifier. It is similar to LDA, but instead of
linear separation, it enables us to separate non-linear. Kernel-based methods, such
as the Parzen kernel, move a problem to a higher dimension, where it can be solved
easier or solved at all. The SVM method that use a kernel is explained in Chap. 4.
kNN is a more complex version of the 1-NN classifier. In this case, we take k nearest
neighborhood elements k to assign the proper label. It is explained together with
the 1-NN classifier in Chap. 4. The perceptron is the simplest neural network-based
classifier. It is just one neuron that is a linear classifier but works totally differently
from LDA. It is explained in Chap. 8. RBF is a more complex network based on the
radial basis function. It is commonly used in pattern recognition. RBF in the sense of
a neural network type is a complex network where the neurons activation functions
are Radial Basis Functions. It is explained in Chap. 8. MLP stands for Multilayer
Perceptron and is a network that consists of many layers of perceptron neurons. It
is much more complex compared to a single perceptron. Using MLP, we can solve
complex classification problems. It is explained in Chap. 8. SVM stands for Support
Vector Machine and is a method in which the goal is to prepare a horizontal plane
that distinguishes between elements of different labels. The hiperplane is prepared
in such a way that the biggest margins are between elements of different labels, and
the hiperplane are found. SVM uses Lagrangian multipliers to make the calculations
of the hiperplane easier. SVM is commonly used in image-based pattern recogni-
tion. It is explained in Chap. 6. The decision tree is a simple classifier that is also a
very fast method of classifying elements. Building the tree is much more complex
and time consuming than the classification part. It is explained in Chap. 4. The last
classification method, or rather a group of classification methods, is a combined
method. It is a group that combines several classification methods or many instances
of the same method. Using more than just one classification method instance can give
better results. An example of a combined classifier is random forests that combine
instances of decision trees. More information on combined classification methods
can be found in Chap. 7.
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Another taxonomy, or rather a simple division, into groups, is proposed in [41].
The authors divided machine learning methods in a different way compared to [40]
and divided the methods into four main groups:

template matching,

statistical classification,
syntactic or structural matching,
neural networks.

bl

This is a very high-level taxonomy. We have already explained the template matching
methods. Many of the methods presented in this book are statistical classification
methods. Regression-based methods or the kNN method are statistical methods.
Syntactic and structural matching methods are based on graphs or grammars. Struc-
tural methods are decision trees. We have dedicated a chapter to neural networks. In
Fig. 1.9 we present another taxonomy. In [34] the methods are divided into two main
groups according to the approximation method. The first group is about methods that
are based on class-conditional probability density function that probability priors.
A probability density function is a function that defines the likelihood (probability)
of an outcome for a given case. To simplify things, these methods are based on
probability theory. The second is based on boundaries and discriminant functions.
Some methods presented in Fig. 1.9 are already shown in Fig.1.8. LDC or QDC
are different names for LDA and QDA. Methods like k-NN, Parzen kernel method
were also shown. In histograms, we can merge two histograms of each class into
a higher-dimensional space and use some probability methods to distinguish the
new elements. The mixture discrimination method is also known as the Gaussian
mixture models method. It is a probabilistic method similar to the k-means method,
which is described in Chap. 4. Logistic discrimination is a different name for logistic
regression. Tree classifiers are also known as decision trees. In this taxonomy, both
methods are considered separately. Rosenblatt’s perceptron is a different name for
the perceptron. In this case, we add the name of the inventor. The generalized linear
discriminant is a different approach of LDA [42] that is used in high-dimensional
cases. A special case of LDA is the piecewise linear discriminant classifier that
consists of a set of linear functions that together distinguish new elements [43]. Dif-
ferent approaches to the taxonomy of machine learning methods can also be found in
[24, 44, 45].

Proposed taxonomy

The taxonomy of machine learning methods can be divided taking into account a
few levels: input data types, architecture depth, and the main concept of the method.
Based on the input data, there are three major groups of machine learning methods:
supervised, unsupervised, and reinforcement. All methods belong to one of these.
Supervised methods are those where the output is known during training. A medical
diagnostic case serves as an example of such a method, in which, for training sake,
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we already know if a given input, like an image, is the image of a cancer or not.
Unsupervised is the opposite approach. This means that we do not have information
if that it is cancer or not. This approach can be useful in any anomaly detection, but
there are also other cases where it brings benefits. There are also methods known as
reinforcement learning methods in which we have labels, but use it only to know if the
method is doing well and uses the reward and penalty mechanism to achieve better
accuracy. Such methods usually go through the same path many times. An example
of a reinforcement learning approach is OpenAl Gym [46] where the bot/method
plays a game, learns, and repeats the game until the game ends. We explain the
unsupervised and supervised methods in the next chapters. On the basis of the depth
of the architecture, we divide the methods into shallow and deep learning methods.
Deep learning is used by some non-researchers as an alternative to machine learning.
This is not true, as deep learning is a group of methods that are neural networks
consisting of many layers. That is why they are called deep. Deep learning has
become a buzzword in recent years. The last level of division is the concept of
machine learning method. Some methods are based on the probability theory; others
are based on decision trees, neural networks, etc. Chapters 4-8 are about different
method groups based on the general concept. There are also other types of methods,
such as evolutionary or combined learning. Evolutionary learning is based on genetic
algorithms and combined takes more than one of the same or different methods
together. It is difficult to draw a taxonomy with all the available methods. There are
more than a hundred methods available. In Fig. 1.10 we choose a few methods and
divide them according to the mentioned levels. At the top, we divided them into
shallow and deep methods. On the left, we mark only neural networks as the biggest
group, and recently the most popular. On the right, we marked the supervised and
unsupervised methods. In the middle, we mark a few methods that are explained
later in this book, but, as mentioned before, there are plenty of other methods that
are similar.

1.6 Quality Metrics of Classification Methods

In this section, we focus on how we can measure the quality of the classification
method. Quality can be understood in several ways. That is why we have divided
this section into three parts. In the first part, we describe common problems that
appear when learning a classification method. It also includes some practical tips for
avoiding common mistakes before using machine learning methods with your data.
The second part discusses approaches for handling test, training, and validation data
sets. We have already introduced this topic at the beginning of this chapter. In this
section, we explain the most popular approaches for data set division in each group.
The third part contains the most popular quality measurement methods. In this part,
we skip the training data, work on the test data set, and compare it with the predicted
output. An obvious quality measure is the accuracy of the success rate, but there are
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more sophisticated methods to measure quality, such as the ROC curve, F; score, or
some other types of error rates, which are explained in this section.

1.6.1 Training Phase Challenges

During training, we can face two commonly known issues. The first is related to the
number of features. It is hard to say what the best number of features to use, as it
depends on the problem that needs to be solved. There are several methods that can
measure the importance of each feature, so we can choose only the most important.
Important means here how a feature affects the accuracy. It is important to reduce
the number of features to the minimum that affects the result, as a higher number
of features makes the computation more complex. For two features, we consider a
two-dimensional classification problem. For three, it would be a three-dimensional
problem. The more features there are, the larger the problem we need to solve. It
is known as the dimensionality problem [47-50]. We have several commonly used
feature selection methods that can be divided into four main groups [51]:

e ranking,

e wrapper,
e hybrid,

e embedded.

Ranking methods are also known as filter methods. In this type of feature selection
method, we do not use a classification method. The goal is to establish a ranking of
the features. Pearson correlation method is one of such a method. We will explain
it in detail in the next chapter. We measure the correlation between the features. We
can skip one of the features if we know that it has a linear correlation with some
other feature or features. This means that adding such a feature does not add any
value to the final result. The name of the second group of methods works that the
feature selection method wraps the classification method and based on the accuracy
selects the features. It takes a set of features, performs the classification, gets the
accuracy, and compares it with the accuracy obtained from a data set of a different
set of characteristics. If we have many features, it can be time consuming to use
this kind of method. These methods start with an empty set of features. It takes one
feature in each iteration and stops as soon as adding any feature from what is left
does not increase the accuracy. Hybrid methods are a mixture of classification and
wrapping methods. In this type of methods, we use the ranking part first, and then
the wrapper part. It makes a huge difference if we have many features. Reduce the
number of features by ranking those before we move on to the more time-consuming
wrapper part. The last type is included in the classification method. This means that
it is not used outside the machine learning method but is part of it. A frequently used
approach is the use of genetic algorithms within the classifier.
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By using a method of mentioned groups, we can reduce the number of features
to the absolute minimum that has an influence on the final result. In addition, adding
more and more features can even reduce accuracy. As shown in Fig. 1.11, the error
rate can increase while increasing the number of features at some points.

Overfitting is another common problem that can occur while training a classifica-
tion method. It is about under-training and over-training. The goal of the training part
is to generalize. It means that we would like to have a method that gives high accu-
racy for any data of a given problem. Under-training occurs when we do not train the
method enough. We have not prepared enough training data, and the method does not
have enough data to train on. Therefore, the method gives lower accuracy, because it
assigns labels incorrectly. The same result we get with over-training, but the reason is
slightly different. We train the method with too many data. Especially when we have
a lot of feature values of the same label that are close to each other. The algorithm
adjusts very well to classification for given data and does not generalize the solution
for a given problem. An example error rate to training data amount comparison is
shown in Fig. 1.12. It is important to do so, remember that more data does not mean
better. It is important to have a set of features that accurately represents a given prob-
lem. As we have already mentioned at the beginning of this chapter, the goal of a
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Fig. 1.13 Generalization problem of two training data sets

classifier is to generalize the best possible. We cannot be sure that a given case is the
best possible generalization, but there are some cases where it is clear that we do it
wrong. In Fig. 1.13 the classification using two data sets is shown. In Fig.1.13b,
a data set that represents the classification problem well is shown. In case of
Fig. 1.13a the classifier is not complex enough to classify properly. The last example
(Fig. 1.13c¢) is a classifier that works very well for given data, but will not work
well for new data. It means it is just too adjusted to the training data and does not
generalize enough.

1.6.2 Data Sets Preparation Approaches

One of the common problems that each data scientist has is to divide the data set
into training and testing data sets. To understand the following equations, we need to
introduce new designations. Let £, be our training data set of size n, T, our testing
data set of size m, M, the number of misclassified cases, Z a function that returns 1
if there is a match between the predicted and the true value and e(d) the error rate of
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classifier d. We also use the testing set X and the labels set Y that we have already
explained. We can write the error rate as follows:

M,
ed)=—=. (1.7)

The error rate can be calculated differently depending on the method of data set
preparation method used. Few commonly used approaches are used to handle train-
ing, testing, and validation data sets.

resubstitution—R-method,
hold-out—H-method,
cross-validation—ir -method,
bootstrap.

The first method is very simple. We have the same data set for training and testing.
It is not the best solution if we consider having a solid classifier. The error rate can
be written as follows:

1 n
er(d) = =3 T(d(Xj; L) #Y)). (1.8)

j=1

This means that we calculate the error rate for each element j of our training data
set and add 1 for each well-predicted case. We need to divide it by n, which is the
number of elements in the training data set. The approach is generally the same as
in the case of Eq. 1.7.

The second method involves dividing a data set into two data sets. It can be divided
into half or other proportions. One set is our training data set, and the other training
data set. We can swap these sets and calculate the average of both sets. The error rate
can be calculated as follows:

. 1 & .
e (d) = - Zl(d(X’A; L, #Y)). (1.9)
j=1

Compared to the resubstitution method, it uses only the testing data set. Cross-
validation is the most common approach. It is also sometimes called a rotation
method. We need to divide the data set into k subsets. The elements in each set
are chosen at random. One of these sets is taken as a test set, and the other sets are
merged into the training set. It should be repeated k times for each k subset. The
error rate can be calculated as follows:

1< - .
ecy(d) = - § 1d(Xj; LS # 7)), (1.10)
j=1
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A special case is where k = m. This means that we have subsets, each consisting
of just one element. This approach is known as the leave-one-out or U method.
The Bootstrap method can be considered as an extension of resubstitution. The goal
is to generate multiple sets from the main set by random selection. We use the
resubstitution method on each set and calculate the average error at the end:

1 X T(Z ¢ LTAX 5 L)) X))
ep(d) = ) Z ST (Z € L) ;

b=1

(1.11)

where B is the number of boostrap sets and Z; is a set of currently observed object
orobjects Z; = (X;,Y;).

1.6.3 Output Quality Metrics

There are several metrics to show the quality of our classification model:

ROC which stands for Receiver Operating Characteristic curve,
AUC—Area Under Curve,

F; score,

Precision,

Recall.

To explain each metric in detail, we use an example again.

Example 4 (Diagnosis) If a patient had asthma, a doctor can take a couple of actions
to check if it is actually asthma. In addition to the action in the end, the doctor must
make a decision whether the patient has asthma or not. The doctor gets the diagnosis
mainly right, but it can be that the diagnosis is wrong because it is only a prediction.
In Table 1.3 we present all possibilities. Positive means that the diagnosis is asthma.
Negative means that there is no asthma diagnosed by the physicians. True and False
are used to indicate whether the decision is correct. It could be that the doctor said
it was asthma, but it was actually lung cancer or another disease.

The best diagnoses are when we get a True Positive (TP) or True Negative (TN).
In two other options, the diagnosis is incorrect. If we consider cancer diagnosis, a
false negative (TN) scenario would be the worst scenario.

Table 1.3 Possible scenarios of doctor’s diagnosis

True condition

Condition positive Condition negative

Predicted Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)
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The decision possibilities mentioned in Table 1.3 bring us to quality metrics. The
most common metric is accuracy. It can be calculated as follows:

#TP + #TN

ACC = .
#TP + #TN + #FP + #FN

(1.12)

The first one that we describe is called True Positive Rate (TPR). It can be calculated

as follows:
#TP

TPR = ——.
#TP + #FN

(1.13)

TPR is also called sensitivity or recall, and is a measure of good predictions within a
set of cases. A higher rate means a measure of good asthma predictions in Example 4.
By #TP, #FP we mean the number of True Positive and False Positive cases, where #
stands for the number of decisions. The opposite is specificity. It is also called TNR,
which stands for True Negative Rate. It can be calculated as follows:

#TN

TNR = ———.
#TN + #FP

(1.14)

Itis a measure that says how well we are at predicting negative scenarios. In Example
4 it would say how good we are at diagnosing that a patient does not have asthma.
Another important metric is precision, which is also known as Positive Predictive
Value (PPV):

#TP

PPV = ——.
#TP + #FP

(1.15)

It is a ratio of positive cases that were predicted well to all positive cases, even those
that are not well predicted. The opposite is the Negative Predictive Value:

TN

NPV = ——.
TN +FN

(1.16)

‘We can also calculate the False Positive Rate metric known as fallout. It is about how
bad we are at predicting positive cases:

FPR = 1 — TNR. (1.17)
The opposite of FPR is the False Negative Rate:
FNR =1 — TPR. (1.18)

Another popular metric is called the F; score and is a weighted accuracy measure.
It takes PPV and TPR to calculate the score:

PPV - TPR
Fl=2-—""" (1.19)
TPR + PPV
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The value F) as in the case of all previous metrics between 1 and 0, where 1 is the
best. An interesting measure is the Matthews correlation coefficient measure, which
is about the correlation between observed and predicted values. The value of MCC
is between —1 and 1. If we have a perfect classifier, we get MCC = 1. A random
classifier is when we have MCC = 0 and a totally bad classifier if we have MCC =
—1. This measure can be calculated as follows:

3 #TP - #TN — #FP . #FN
~ /(TP + #FP)(#TP + #EN)(#IN + #FP)(#IN + #N)

MCC (1.20)

Example 5 (Lung cancer diagnosis) We use the example of lung cancer diagnosis to
explain how to calculate the quality metrics we have just described. In this example,
we have three doctors: Dr. Smith, Dr. Williamson and Dr. Simpson. Each one is an
oncologist and set diagnoses on daily basis. To compare how good each doctor is at
making diagnosis of lung cancer we have a data set of twenty patients. Each doctor
has a different set of patients. In Table 1.4 the data sets of patients and given diagnosis
are shown. Based on the data given in Table 1.4 we can calculate the results of TN,
TP, FN and FP. The results are shown in Table 1.5. It looks like Dr. Simpson gives the

Table 1.4 Three doctors’ prediction compared to true condition of lung cancer

Dr. Smith Dr. Williamson Dr. Simpson
Condition Diagnosis Condition Diagnosis Condition Diagnosis
1 1 1 1 1 1
-1 1 —1 1 1 1
1 1 1 1 1 1
-1 -1 -1 -1 1 1
1 1 1 1 1 1
-1 1 -1 1 1 1
1 1 1 1 1 1
-1 -1 -1 -1 1 1
1 —1 1 -1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1
-1 1 -1 1 -1 -1
1 1 1 1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1
-1 1 -1 1 1 1
1 -1 1 -1 -1 -1
-1 -1 -1 -1 -1 -1
1 1 1 1 1 1
-1 1 —1 1 -1 -1
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Table 1.5 Example 5 basic quality metrics

Quality metric Dr. Smith Dr. Williamson Dr. Simpson
TN 5 9 10
TP 8 9 10
FN 5 1 0
FP 2 1 0

best diagnosis. We can calculate the remaining quality metrics for each physician.
Let us start with Dr. Smith:

8+5
ACCSmilh = W = 065,

8
TPRgmin = 1—3 ~ 0.615,

5
TNRgmih = ——— ~ 0.714,
Smith 542

8
PPVspin = —— = 0.8,
Smith 3 T )
5
NPVsmin = 555 0.5,

FPRgmitn = 1 —0.714 = 0.286,

: 0.8-0.615 0.492
Fomith — =2 ~ 0.695,
0.615+0.8  ~1.415

8.5-2.5 30 30
MCCsmith = = =
VB+2)B+HG+2(B5+5  J10-13-7-10 /9100
30
=~ ~0.314.
95.4

We can now compare the values that we got for Dr. Smith with Dr. Williamson and
Dr. Simpson. The results are presented in Table 1.6. The results indicate the thought
we had in the first place. It looks like Dr. Simpson makes the best prediction of lung
cancer. The accuracy and Matthews correlation coefficient metrics are at a level of
100%. Dr. Smith is almost as good, but as indicated by FNR and FPR, has some
misclassified cases. The worst predictions are given by Dr. Smith. The accuracy is
only 65%, so it is a bit more than a random guess. The MCC metric shows that
it is even better. To calculate quality metrics, we can use Python and some simple
arithmetic operations. An example is shown in Listing 1.5.
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Table 1.6 Quality metrics calculated for example presented in Table 1.4

Quality metric Dr. Smith Dr. Williamson Dr. Simpson
ACC 0.65 0.9 1.0
TPR 0.615 0.9 1.0
TNR 0.714 0.9 1.0
FNR 0.385 0.099 1.0
FPR 0.286 0.099 0.0
PPV 0.8 0.9 1.0
NPV 0.5 0.9 0.0
Fi 0.695 0.9 1.0
MCC 0.314 0.8 1.0

def calculate_quality_metrics(self):

tn = 0
tp = 0
fn = 0
fp = 0

for i in xrange(len(self.data_set)):
if self.data_set[i] > O:

if self.data_set[i] == self.predicted_set[il:
tp = tp + 1

else:
fp = fp + 1

else:

if self.data_set[i] == self.predicted_set[il:
tn = tn + 1

else:

fn = fn + 1

acc ((tp + tn) x 1.0) / ((tp + tn + fp + fn) * 1.0)

tpr = tp * 1.0 / (tp + fn) * 1.0
tnr = tn x 1.0 / (tn + fp) * 1.0
ppv = tp / (tp + fp) x 1.0

npv = tn / (tn + fn) % 1.0

fpr = 1.0 — tnr

fnr = 1.0 — tpr

f1 = 2 % (ppv * tpr % 1.0 / (tpr + ppv % 1.0))

mcc = (tp * tn — fp % fn) / (sqrt((tp + fp) * (tp + fn) *x (tn + fp) =x*
(tn + fn)) % 1.0)

return [acc, tpr, tnr, ppv, npv, fpr, fnr, mcc]

Listing 1.5 Quality metrics implementation

ROC stands for Receiver Operating Characteristic [52]. It is a curve that shows
the performance of a classification method. A few examples of the ROC curve are
presented in Fig. 1.14. To simplify, let us assume that we consider a binary classifier.
To draw an ROC curve, we need to calculate two metrics: FPR and TPR, but the curve
says much more than just the relation between those two metrics. If both metrics are
high, we know that other metrics that we mentioned are high as well. In Fig. 1.14
three simplified ROC curves are presented. The black-marked line is if we have a
classifier that classifies with an accuracy of 50%. The accuracy on this level cannot
be considered high. Such a classifier can be replaced with a coin throwing simulator
and classify based on what we get. The blue-marked curve is for a classifier with good
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Fig. 1.14 Receiver 1
operating characteristic

curve 0.8
0.6

(a2

a9}

H
0.4
0.2
0

FPR

accuracy. This means that it classifies the current problem well. The best classifier
is when we get 100% precision. Such a ROC curve is marked red.

Fun fact: The Receiver Operating Characteristic (ROC) curve was devel-
oped during World War II by electrical and radar engineers to improve the
detection of enemy objects on battlefields. The term “ROC” originates from
this application, reflecting its initial use in evaluating radar receiver perfor-
mance.”

¢ https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

An implementation of the calculation of the ROC curve is presented in the Listing
1.6. To draw the ROC curve we need to get at least a few points and connect each to
get the curve. To get those points, we need to calculate the TPR and FPR metrics at
a given cut-off point. The cutoff point here means the point where we measure those
metrics. In many cases, the cut-off points are chosen on the basis of the classification
problem. For lung cancer, it could be the patient’s age. It means that we need to
sort the testing data set by age and set the cut-off points as the age changes. In our
example, we choose it to be 5, 8, and 10 cases of each label for Dr. Smith and 4, 7
and 10 for Dr. Williamson. In the case of Dr. Simpson, the cut points do not matter as
it is the perfect classifier case. We can choose other cut-off points or even calculate
the FPR and TPR metric at each test data set element, but this would not change the
ROC and AUC much. An example of the implementation of the calculation of the
ROC curve is shown in Listing 1.6.

I def calculate_metric_at_cutpoint(self, cutpoint, label):

cutpoint_value = 0
value = 0
4 for i in xrange(len(self.data_set)):
if self.data_set[i] == label:

6 cutpoint_value = cutpoint_value + 1


https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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if self.data_set[i] == self.predicted_set[i]:
value = value + 1
if cutpoint_value == cutpoint:
break
if label > O:
values = value * 1.0 / cutpoint % 1.0
else:
values = 1 — (value % 1.0 / cutpoint % 1.0)
return values

def calculate_metric(self, cutpoints, label):
values = [0.0]
for i in xrange(len(cutpoints)):
values.append(self.calculate_metric_at_cutpoint (cutpoints[i],
label))
return values

def calculate_roc_curve_values(self, cutpoints):
self.check_sets_size ()
tpr_vector = self.calculate_metric(cutpoints, 1)
fpr_vector = self.calculate_metric(cutpoints, —1)
tpr_vector.append (1.0)
fpr_vector.append(1.0)
return [tpr_vector, fpr_vector]

Listing 1.6 ROC curve calculation implementation in Python

The code consists of three methods: main method calculate_roc_curve_
values, calculate_metric and calculate_metric_at_cutpoint.
The first method executes the second method to get the tpr and fpr values at the
cut points. Method calculate_metric iterated through each cut point and runs
for each. The third method that calculated the TPR and FPR value. The cut-point
TPR and FPR values are used to obtain the ROC curve.

Example 6 (Lung cancer diagnosis II) We can take the previous example to explain
the AUC metric. To calculate it, we need the TPR and FPR metrics for each cut point.
The area under the curve is part of the ROC curve and is just the surface area under
the curve. For the red-marked ROC curve shown in Fig. 1.14 the surface area is 1.0.
The AUC value shows the quality of the classification method. The value can vary
from O to 1, but each value that is 0.5 or less is about a classifier that does not classify
well at all. A better explanation of the relationship between the AUC value and the
quality of the classification method is shown in Table 1.7. For the previous example
we get the ROC curves as it is shown in Fig. 1.15. Compared to ROC curves shown in
Fig. 1.14, we see that the best predictions are given by Dr. Simpson and worst by Dr.
Smith. In Python, we can use the method trapz from package numpy to calculate
the surface under the curve. An example of usage is shown in Listing 1.7.

from numpy import trapz

3 def calculate_auc(self,tpr,fpr):

return trapz(tpr, fpr)
Listing 1.7 AUC calculation implementation in Python

AUC values for Example 5 are shown in Table 1.8. The AUC values can vary in some
cases depending on the cut-off points we choose.
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Table 1.7 Area under curve value and quality of a classification method relation

Value Classifier quality
1.0 Perfect
0.99-0.9 Excellent
0.89-0.8 Very good
0.79-0.7 Good
0.69-0.51 Poor
0.5 Worthless
4 24 o~
= = =
FPR FPR FPR
(a) Dr Smith’s predic- (b) Dr Kowalski’s pre- (c) Dr Simpson’s pre-
tion diction diction

Fig. 1.15 ROC curves of three example predictions given in Example 6

Table 1.8 AUC values for Example 5

Dr. Smith Dr. Williamson Dr. Simpson
AUC 0.69375 0.95 1.0
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Chapter 2 ®)
Machine Learning Math Basics e

The goal of this chapter is to provide an explanation of several well-known mathe-
matical terms that are used in machine learning methods presented in this book. In
the first part, we cover basic statistical terms such as standard deviation, variance,
coefficient matrix, and Pearson correlation. It is followed by the probability terms
and related topics like combinatorics, conditional probability, and probability distri-
bution. The third section, even though it is not very extensive, consists of the crucial
part in each machine learning method—operations on matrices. The next section is
about differential calculus. To understand what a gradient is, we need to explain a
few other terms in the first place. The first term that we explain in this section is
the limits. It is an obvious term for anyone who studied a technical oriented field.
The second term explained in this section is derivatives. In the clustering methods
explained in this book, fuzzy sets are used. The fuzzy logic is explained in the section
next to differential calculus. The last part is an overview of the distance measures
available.

2.1 Statistics

We are going to skip the part of mean explanation because we consider it to be
obvious to everyone reading this book. The first two terms that we explain are the
standard deviation and variance. The variation can be calculated as follows:

n

2_1 L2
o’ = nZ(x, )2, 2.1)

i=1

where x; is an element of a set X and X is the mean of the set X elements. Let us
take an example for a better understanding.
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Table 2.1 Student weights

. X X2 X3 X4 X5 X6
(kilograms)

89 67 110 92 75 95

Example 1 (Students) We have a group of six students. Table 2.1 shows the weight
in kilograms of each student.
For the data given in Table 2.1, we have a mean X = 88. The variance is:

o? — (D2 + (=212 + (22)2 + (D) + (=13)2 + (=7)?
- 6

~ 193.33.

The variance is a square of the difference between the elements and the mean. It is
always positive and shows how varied a set is.

There are two terms that explain a set better than variance. It is the average and
standard deviation. Average deviation looks almost the same as the variance, but
instead of the square of differences, we calculate the absolute value of it:

oy = 2=t Pi =X (22)
n

For data given in Example 1, we get the average deviance:
o, ~ 11.33.

The standard deviation is just a square root of variance:
o =+o2. (2.3)

For example, the standard deviation of Example 1 would be:
o ~ 13.90.

This means that the deviation from the mean is 12.85. It is easy to understand when
we draw it as shown in Fig.2.1. It is the average of how far the red dots (students’
weight) are from the blue line (mean).

The next term that is important for understanding machine learning methods is
correlation. The most popular correlation measure is the Pearson correlation. It is
about how one feature depends on the other feature. We can say that the height of a
dog is highly correlated with its weight. So we have two features: the size and weight
of a dog, and we know that a larger dog is usually heavier. The correlation is a value
of —1 to 1 and represents the dependence of two values (features) like those shown
in Table 2.2. The values presented are positive, and we have the same correlation
for negative values. Some exemplary correlation charts are shown in Fig.2.2. In Fig.
2.2a, b we present a positive and negative total correlation. In Fig. 2.2c we have a very
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Fig. 2.1 Standard deviation of the student example. Black dotted lines are the standard deviation
margins

Table 2.2 .Correlation Correlation value Correlation
dependencies -
0 No correlation between
variables
0-0.3 Low correlation
0.3-0.5 Mid correlation
0.5-0.7 Mid-high correlation
0.7-0.9 High correlation
Above 0.9 Very high correlation
1 Total correlation

low correlation example. The samples are much more chaotic than the previous two
examples. In the last Fig. 2.2d example we show a negative curvilinear example of
correlation. It is still a strong correlation, but not as strong as the first two examples.
The correlation for two features can be calculated as follows:

> Y (i — X)) (i — X2)

I — T2 i i — 7).

(2.4)

Example 2 (Learning) What is the correlation between hours spent learning and
the final grade of an exam? Let us assume that we have five degrees from A to F. We
have a range of points that correspond to each grade:

e A—100-91,
¢ B—90-81,
e C—80-71,
e D—70-61,
e E—60-51,

e F—50-0.
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Fig. 2.2 Correlation examples

Table 2.3 Correlation between hours spent on learning and exam grade exemplary data
Average 10 22 30 38 44 48
hours spent
on learning
Average 40 52 61 75 88 95
points
collected

Let us assume that we have the averages of hours spent learning and points collected
during the exam as presented in Table 2.3. It can be drawn as a chart like the one shown
in Fig.2.3. We can easily say, based on Fig. 2.3, that there is a positive curvilinear
correlation. To be sure, we can calculate the correlation value as follows:

6274165+ 15+ 39 +234 4424

/1024 - 2265.5

It shows that there is a high correlation between the hours we spent learning and the
final exam grade we receive.

~ (0.9874.

r
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Fig. 2.3 Average hours 100 -
spent on learning compared -
to the final exam 80
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Average of hour spent on learning

2.2 Probability Theory

To better explain the basics of probability theory, we use some games. Let us take
the first example. A traditional dice is a cube. It gives a number from one to six when
rolled. What is the probability that we get the six when we roll it? A set of all possible
cases is called sample space and marked as 2. In probability theory, we use sets to
list all possibilities. For our example, it could be a set A = {wy, w2, w3, w4, Ws, Wg},
where w; are the numbers we can get after rolling the dice. This means that the
probability of getting six is equal to P(A) = %, because there are the same chances
of getting six as any other number from A.

2.2.1 Combinatorics

Probabilistic combinatorics is part of probability theory and consists of several oper-
ations to get the probability of an event, such as getting a six in a dice game. These
operations are listed in Table 2.4.

The value of n is the number of possibilities in the set A. The value of k is the
number of possible combinations. To better understand the methods given in Table
2.4, we present some examples.

Example 3 (Books) What is the number of combinations of orders of four different
books? The permutation shown in Table 2.4 is the easiest way to calculate the number
of possibilities. It can be easily calculated as a factorial of 4:

P(4) = 41 = 24.

In Python, there is a math library that already has a factorial implementation. You
can use it as shown in the Listing 2.1.

from math import factorial

3 result=factorial (4)

Listing 2.1 Calculation of permutation in example 3
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Table 2.4 Basic combinatorics methods

Order Repetition | Equation
Yes |No |Yes |No
Permutation + - — + P.(n) =n!
Permutation with repetition + - + - P-(n;ni,na, ..., n5) =
Variation + - - + V(n, k) = (nf—'k),
Variation with repetition + - + - Vn, k) =nk
Combination n ,
- + - + C(n,k):(k>:m
Combination with repetition ~ N N ~ Con ko — ( n+k—1 ) _
k
(n+k—1)!
Kl(n—1)!
Table 2.5 All possible combinations of Example 4
1233 1323 1332 3312
3321 3132 3231 2331
3213 3123 2133 2313

Example 4 (Set order) Let’s assume that we have a set of digits 1, 2, 3, 3. The digit
3 occurs twice. This is what we know about someone’s safe lock-digit combination.
How many combinations are possible when we know that the order is important?
Permutation with repetition can give us the right answer:

_ 4
P (4:1,1,2) = =12
121!

We have only 12 possibilities, so the safe lock is not that secure (Table 2.5).

Example 5 (Elevator) Let us say that we have an elevator in a four-story building.
There are three people who will use this elevator, and each one will leave it on a
different floor. How many possibilities do we have? With variation, we can calculate
it easily:
41
V4,3) = G

We have 24 possibilities (Table2.6):

Example 6 (Coin) How many different possibilities do we have of reverse and
obverse when we flip a coin five times in a row? We can use variation with repetition
to calculate it (Table 2.7):

V(2,5 =2°=32.
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Table 2.6 All possible variations of the elevator example

112233 1122 34 112332 1123 34 112433 112432
122133 1221 34 122331 1223 34 1224 33 12 24 31
132132 132134 132231 132234 1324 31 132432
142133 14 21 34 142233 1422 31 14 23 31 1423 32

Table 2.7 All possible combinations of Example 4

00000 OOOOR OOORO OOORR
OOROO OOROR OORRO OORRR
OROOO OROOR ORORO ORORR
ORROO ORROR ORRRO ORRRR
ROOOO ROOOR ROORO ROORR
ROROO ROROR RORRO RORRR
RROOO RROOR RRORO RRORR
RRROO RRROR RRRRO RRRRR

Example 7 (Powerball) Powerball is a well-known lottery game in the United
States. We have 69 white balls in one drum and 26 red balls in the other drum.
We take 5 white balls and 1 red. To simplify, let us assume that we are considering
only the drum with white balls. The combination can be used here as follows:

69!

€695 = m

= 11,238,513.

This means that we have more than 11 million possibilities.

Example 8 (Dice) We have three dice. When we roll all three, we get three values
from one to six each. How many combinations are possible when we assume that we
roll all three dice at once? The answer is as follows:

(6+3—1)!_5!~5-6-7~8_56
3N6-=1! 6-5! o

C(6,3) =

Example 9 (Pairs) We can combine the above methods to calculate the number of
possibilities for more specific cases. Let us calculate how many possibilities we have
to get a pair of Kings. First of all, we need to calculate how many possibilities of
card combinations we have:

C(52,5) = 2,598,960.

Let us assume that we want to get two kings. We have a set of thirteen cards of each
color. We have four kings, each of different color. We get five cards in total. To get
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only a pair, we need to get the other three cards from a set of twelve, so we do not
get a third king. We can calculate it as follows:

13-C4,2) - C(12,3) - C(4, 1)* = 1,098,240.

We have more than a million possible card arrangements to get a pair in the poker
game.

2.2.2 Conditional and Independent Probability

For now, we know how to calculate the combinations possibilities in some gambling
games. It is time to learn to calculate the win possibilities. As mentioned above, 2
is the set of all possible combinations. In the last example, we calculated the number
of combinations to get a pair in the poker game, but what is the probability of getting
a pair in general? Let A be an event of getting a pair, so the probability would be as

follows:
1,098,240
P(A) = ———— =~ 0.4226.
2,598,960

There are more than 40% chances to get a pair at poker. Let us compare it to the odds
of getting a full house (event B):

3744

= —— ~ (.0014.
2,598,960 0-00

P(B)

This means that the probability of getting the full house is below 1%. It sounds
reasonable, as it is logically much harder to get a full than a pair. In probability
theory, we can calculate not only the probability of just an event. There are more
sophisticated examples where probability can be calculated. If we roll a dice, we
have 50%/50% chances to get an even value. Let A be an event to get an odd value,
and let A’ be an event to get an even value. In the case of the event A, we consider a
set of values: 1, 3, 5. In A’ the set is 2, 4, 6. We assume that we know that an event
B occurred. It says that the value is greater than 3. The conditional probability is
the probability of an event A when another event occurred. It can be calculated as
follows:

P(ANB
meyziﬁal. 2.5)

If P(A) = § and P(B) = ] as in our dice example, we can calculate the proba-
bility of getting an odd value that is greater than 3 as follows:
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Fig. 2.4 Independent
probability example. Two
events A, B and the common
part of both marked with red

1
P(A|B) = N

ISIE[=NES

The probability of the event B is equal to % since we have the set of three elements of
six possible dice values. The probability P(A N B) is the subset of both sets A and
B. This set has one element 5. This means that the probability P(A N B) = é. That
is why we have the probability of % to get an odd value if we know that the value of
thrown dice is higher than 3.

Other important terms in probability theory are independent probabilities (Fig.2.4).
Two probabilities P(A) and P (B) are independent when P (A|B) and P (A) are equal
for P(B) > 0. Let us follow the case presented for conditional probabilities. The
event A means that we get an even value. Let event B be an odd value on the other
dice. The probabilities of both event A and event B are equal % Are these events
independent? The conditional probability is equal to P(A|B) = % In the given case,
both events are independent, because P(A|B) isequal to P(A) = % In other words,
independent probability is one that is not affected by the other event. It is written as
follows:

P(ANB)=P(A)- P(B). (2.6)

The last term in this section that we present is the total probability. It makes us
one step closer to understanding the Bayes theorem that is explained in Chap. 4. Let
us say that we have a known event B and a list of events Aj, A,, ..., A, where each
pair of the list excludes each other. Furthermore, the disjunction of each event in the
list is equal to 1. If we connect event B and events Aj, A,, ..., A,, we get the total
probability of event B that can be calculated as follows:

P(B) = P(B|A)) - P(A1) + P(B|Ay) - P(A2) + ...+ P(B|A,) - P(Ay)
- (2.7)
=) P(BIA) - P(A)).
i=1
Example 10 (World Championships) Our national volleyball team qualified for the
World Championships. Based on bookmakers information, we can group our oppo-
nents into five groups of different types:
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Fig. 2.5 Total probability
‘World Championship
examples A, A
B
Ay
A As
Q
e B|A;—we can win with that team for about 90%,
e B|A,—rather win, but for only 70%,
e B|As—hard to say, it is a 50%/50% winning chance,
e B|A,—it is more possible to loose rather than win as the chances of winning are

40%,
e B|As—we probably loose as bookmakers give us only 20% of success.

When it comes to the number of teams that we can win or loose with we can divide
it as follows: A1—35%, A,—25%, A3—20%, As—15%, As—5%. It can be drawn
as a diagram as shown in Fig.2.5.

The question is what our national volleyball team’s chances of winning a game
are? Let B be the event of the game won. It is easy to calculate with total probability:

P(B)=09%0354+0.7%0.25+0.5%0.240.4%0.15+ 0.2 %« 0.05 = 0.66.

Itlooks as if we had a pretty strong team, as our chances of winning the game are about
66% high. Total probability can be easily drawn as a tree of all event probabilities.
The tree for the current example is shown in Fig. 2.6. It consists of B’ events that are
about losing the game. It is easy to see in this figure that the sum of A; events is 1
and the same with the second level leaves where the sum of B and B’ is obviously
also 1.

The probability tree is commonly used in economic and financial models. It gives
an easy-to-understand graph, so calculations of some probabilities are easier to man-
age. We can calculate the probability of a given event or sum of events easily, we just
need to go through the path from the right to the left and multiply it. To calculate the
probability of a few events, we need to sum all paths that we want to calculate the
probability of.
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Fig. 2.6 Total probability
tree of the World

Championship examples Ay \

0,35 Ay <

0,7 B
0,25
0,5 B’
0,2 /
Aj
0,\5 B
0,15
0,6 B’
0,05 A4

2.3 Linear Algebra

Generally, linear algebra is about operations of matrices and is a crucial part of each
machine learning method. From a programming in Python perspective, there are two
ways of training machine learning methods. The first is an iterative way in which we
go through each element in a vector or matrix to calculate the expected result. This
approach is based on many for or while loops. The second approach is based on
libraries like numpy that are adjusted and perform much better than any iterative
implementation. Numpy! is a library for numerical computation and is focused on the
performance of such a function. The difference in performance can even be reached
more than hundred times, so it is reasonable to use the vectorized approach.

! Numpy documentation: https://numpy.org/doc/stable/reference/index.html.


https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html
https://numpy.org/doc/stable/reference/index.html

48 2 Machine Learning Math Basics

Table 2.8 Some numpy matrix/vector building methods

Sample code Short explanation

arr = Imports a matrix/vector from a text file
numpy . loadtxt ('matrix.txt’)

arr = Imports a matrix/vector from a CSV file
numpy .genfromtxt (‘matrix.csv’,

delimiter=";")

arr = numpy.ones((2,3)) Returns a matrix of size 2 x 3 filled with ones
arr = numpy.zeros((2,3)) Returns a matrix of size 2 x 3 filled with zeros
arr = numpy.eye(4) Returns a matrix of size 4 x 4 filled with zeros,

except diagonals where it is filled with ones

arr = numpy.random.rand(2,4) Returns a matrix of size 2 x 4 or random
values from O to 1

To create a vector or matrix, we use the numpy . array () method. The method
returns a numpy array object as in Listing 2.2.

import numpy as np
> vector = np.array([1,2,3,4])
4+ matrix = np.array([[1,2],[3,4]]1)

Listing 2.2 A numpy vector and numpy matrix

There are a few ways to create a matrix or vector with numpy. We can import it from
a text or CSV file with methods 1oadtxt () and genfromtxt (). Some other
methods can be used to initialize a matrix filled with some values. One of such a
method is ones () which fills the matrix with values of 1. The size of the matrix
or vector is given as a parameter. To create an identity matrix, we use the eye ()
method. The last method worth mentioning is rand () which creates a matrix with
random values, each between 0 and 1. Examples of the mentioned methods are
shown in Table 2.8. To create a vector, instead of (2, 3) as shown in Table 2.8 for
the method ones (), we use just the second value. It means that if we want to create
a vector of 3 items, we should use (, 3). Numpy library has many more methods
than those used for matrix creation. There is a set of methods that can be used for
matrix manipulation. By manipulation we mean operations like value addition. Some
of such methods are listed in Table 2.9. We can perform many operations on matrices
and vectors. Let us focus on matrices, as it can be done in the same way or simpler
on vectors in most cases. The most common operations are addiction, multiplication,
division, and subtraction. When dealing with fixed values, we can do it in Python
using the same operators as we do regular math operations. An example is shown in
Listing 2.3.

import numpy as np

3 matrix_1
4 matrix_2

np.array ([[1,2],[3,411)
np.array ([[5,6],[7,811)

6 matrix_add = np.add(matrix_1, matrix_2)
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Table 2.9 A few examples of numpy matrix manipulation methods with sample codes

Sample code Description

numpy . append (arr, values) Appends values at the end of the matrix arr
numpy . insert (arr, 1, values) Inserts values before index 1 of matrix arr
numpy .delete (arr, 2, axis=0) Deletes row on index 2 of matrix arr

numpy .delete (arr, 3,axis=1) Deletes column on index 3 of matrix arr
list = arr.tolist() Returns a list

arr.resize((3,4))

7 matrix_add = matrix_1 + matrix_2

matrix_multiply
matrix_multiply

np.multiply (matrix_1, matrix_2)
matrix_1 % matrix_2

Listing 2.3 A few basic operations done on numpy matrices

For the code shown in Listing 2.3, the first example can be calculated as follows:

12 56 1-52-7 514

[34}X[7s]:[3.64.8}=[1832] 28
In this example, we use a small matrix of size 2 x 2. In many and now even almost
all machine learning methods, the matrices are much larger. As mentioned above,
numpy is optimized to perform well in such cases. Some other operations that can
be performed using numpy are shown in Table 2.10. The method that may not be
as easy to understand is the dot () method. It is a kind of multiplication operation,
but it works differently from the multiply () method. Calculates the value of
the dot product differently. In Table 2.10 an example of the calculation of the dot
product is shown. The presented example works for two matrices but behaves like
multiplying () if one of the parameters is just one number. There are more
methods in which we perform mathematical operations on matrices. The most popular
are shown in Table 2.11. The table contains only methods that are used in further
detail in this book. We have methods that use the matrix as input and returns matrix
as output. All methods do an operation on each cell in the matrix one by one. The
method names do exactly what they mean, so no more explanation is necessary here.
The only three that need the second parameter are min (), max () and mean ().
The axis parameter is about the number of axis where the minimum, maximum or
mean value is returned.

The last thing we describe in this section are the properties of numpy arrays. There
are two listed in Table 2.12 that are important in our opinion. The first gives the total
number of elements. If we have a matrix of size 2 x 5, the size property returns 10.
The property shape returns 2 x 5 for the same example.
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Table 2.10 Numpy matrices operations with examples

Sample code

Example

matrix = numpy.add(matrixl,matrix2)

o]

(56] [1+52+7
X =
_3 4_

69
78] [3+64+8] |912

[
7]

. ) , [12] [56] [1-52-7
matrix = numpy.subtract (matrixl,matrix2) X =
134 |7 8] |13—-64-38
, ) ) , [12] [56] [t1-52-6 12
matrix = numpy.multiply (matrixl,matrix2) X = =
134] |7 8] |3:74-8 21 32
. . ) , [102] [22 10/2 2/2 5 01
matrix = numpy.divide (matrixl,matrix2) X = =
L9 4 33 9/3 4/3 3133
. ) , [12] [56 1.52.7 5 14
matrix = numpy.dot (matrixl,matrix2) X = =
134 738 3-64-8 18 32

Table 2.11 Commonly used numpy methods

Sample code

Example

matrix = numpy.sqgrt (matrixl) Calculates square root of each element
matrix = numpy.sin(matrixl) Calculates the sinus value of each element
matrix = numpy.log(matrixl) Calculates natural logarithm of each element
matrix = numpy.abs (matrixl) Absolute value of each element in the array
matrix = numpy.ceil (matrixl) Rounds up to the nearest int

matrix = numpy.floor (matrixl) Rounds down to the nearest int

matrix = numpy.round(matrix)

matrix = numpy.mean (arr,axis=0) |Returns mean along specific axis

sum = numpy.sum(matrixl) Returns sum of arr

min = numpy.min() Returns minimum value of arr

max = numpy.max (axis=0) a

sorted_matrix = numpy.sort() b
Table 2.12 Other useful numpy properties

Property name Description

arr.size

Returns the number of elements

arr.shape

Returns the shape of a matrix
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2.4 Differential Calculus

The most common method to optimize and find the best possible model uses gra-
dients. To understand gradients, we need to explain the limits and derivatives. One
of the best explanations for what limits are can be found in [1]. This is our best
prediction of a point that we did not observe. The formal definition of the limit is the
following equation:

lim £(x) = L, (29

where x — ¢ means that x is coming close to c¢. L is our prediction of f(x). Addi-
tionally, we assume that since it is a prediction, there is an error margin € > 0, so
that there is a range margin § > 0 that for each x; within 0 < |x; — ¢| < § we have:

| f(x)—L| <e. (2.10)

Let us draw an example for a better understanding. In Fig. 2.7 we can see a function
fx) =1+ % marked blue. In red, we mark the error margins €. The middle of the
margin € is marked black y = 1. Letx — x¢ where xy = 50. The error margin shown
in Fig.2.7 is set to € = 0.2 and § = 30. The limit would look as follows:

1
li =14+ —.
fim 00 =1+ 3
If we can check the limit for xq directly, we just assign to x the value of x;:

1
li —1—.
Jim S =135

Now we can check how small the error margin € can be. We assumed € to be 0.2 for
now:

Fig. 2.7 Limits example for X0—0 X0 X0+ 0
y=1+1

20 40 60 80 100



52 2 Machine Learning Math Basics

n+lo1li<o2
X 50 T
1 1
|- — —| <0.2.
x 50

The range margin § is set in our case for 30. We can check if € is set correctly for
given 6 by checking the boundary values:

10.05 — 0.02] < 0.2,
10.0125 — 0.02| < 0.2.

For both boundaries, the inequality is true. We could even reduce the error margin
€ t0 0.05 and it would still be true. A more interesting example would be x — oo.
This means that x is increasing to infinity. In other words, xl will gradually become
closer to 0. In such a case we assume that it is 0, so:

. 1
lim 1+ 1.

xX—00 ; =
Limits are also very useful when facing a zero-divided problem. We know that we
cannot calculate the function f(x) =1+ % for x = 0, because we cannot divide by
zero. In this case, we can assume that x is going to be close to 0 and is positive:
111 1 1

3 408 16 ToR but it never reaches or goes below 0. In this case, we mark

it with a + like:

1
Iim 1+ — = o0.
x—0t X

We can draw the function as shown in Fig.2.8. For § and 1, it is, respectively:

Fig. 2.8 Limits example for
lime o+ y=1+1
5
0
-5

-100 =50 0 50 100
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li -]=1

We presented examples for both x — 0" and x — 0~ in Fig.2.8.

2.4.1 Derivatives

Derivatives are about changes in function. We can use derivatives to see how much
the function values change from one point to another. Mathematically, it can be
presented as follows:

fx+dx)— fx)

- @2.11)

! — 1'
Feo = fm,
where f’(x) is the derivative of the function, dx is the change between points. The
change can also be found in other publications such as éx. It is the difference between

two points:
dx = x — xgp. (2.12)

A graphical interpretation of the derivative can be drawn like shown in Fig.2.9. The
derivative can also be interpreted as the tangent tan of the ZC AB angle shown in
Fig.2.9:

fxo+dx) — f(x)

tan <<CAB =
dx

(2.13)

Based on Eq. 2.11, we can calculate the derivative f(x)’ by adding x? + 2x to the
equation:
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Fig. 2.9 Derivative
definition
4
B
2
A C
0
0 2 4 6 8 10
X0 Xo+h
. fxr+dx) = f(x)
[
fy = dlxlgo dx
i (x +dx)® 4+ 2(x +dx) — (x> 4+ 2x)
= o dx
_ x2 4 2xdx + dx? 4+ 2x + 2dx — x* — 2x
= o dx
_ 2xdx +dx% + 2dx
= lim
dx—0 dx
. dxQ2x+dx +2)
=lim —=
dx—0 dx
=2x + 2.

We assumed that the change is 0. For any change different than 0 we get f(x)" =
2x 4 2 + dx, where dx is the change/error rate. This means that the lower we go, the
lower the error rate. Usually, the derivatives are calculated for a small change, because
the change is different at any x. In Fig. 2.9 the change will be different for xo = 3
and for xy = 5, because the blue line isn’t straight. As shown in Eq. 2.11 dx — 0, it
should be a small number like 0.1 or less. Instead of calculating the derivative from
Eq. 2.11 every time, there are some commonly used precalculated derivatives which
simplify the calculations. The most popular derivatives can be found in Table 2.13.

2.4.2 Gradients

The derivatives show the next step of our function at some point. This means that we
can find the maximum or minimum much faster. The higher the derivative, the more
the value of the function increases. Gradients use derivatives to show the direction of
function increase of more than one variable. It is marked with V f (x|, x,). Gradients
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Table 2.13 Basic derivatives functions

Function name Derivative

Constant function (c) () =0

Power function, o # 0 (x*) = ax*!

Square root function, where o = % Wx) = 2\1/;

Exponential function @ > 0,a # 1 @) =a‘lna
Exponential function with base e () =e*

Logarithm function, & > 0,a # 1 (log, x) = xl:m

Natural logarithm, where a = e (Inx) = %

sines function (sinx)’ = cosx

cosines function (cosx) = —sinx

tangent function (tgx) = cos12x =1+tg%x
cotangent function (ctgx) = — Smlz - = —(1 +ctg?x)
arcsin function (arcsinx)’ = \/1177

arccos function (arccos x) = — ; 1_ —
arctg function (arctg)’ = 11—x2

arcctg function (arcctg)’ = —H_%
Hiperbolic sines function (shx) =chx

Hiperbolic cosines function (chx) =shx

are used in several classification methods to find the local minimum or maximum
of a function. Local minimums are part of the learning process, and the faster the
algorithm finds them, the better. Gradients make it possible to find them much faster
than using many other methods. Let us take an example of the function f(xy, x;) =
3x§ + 2x,. It is drawn in Fig.2.10. The function is shown only for values of x;, x,
between —10 and 10. The three-dimensional plot is divided into rectangular parts
that are colored differently. This is done to better understand the concept. The colors
represent the value of y like is done with temperatures. The blue rectangles are where
the value is low. Yellow rectangles have a higher value than blue rectangles, and the
highest values are marked in red. A gradient of function with two input variables
(two features) and one output (label/class) looks like:

(2.14)

Vfxy,x) = (f(xl’XZ) S, XQ)> '

dxl ’ dXQ

Keep in mind that the commonly used nomenclature is f(x, y) where the output is
z, but we changed it to comply with the nomenclature of pattern recognition classifi-
cation methods. The fraction ﬂ;‘—x’]"” means that we take a derivative of the function
f(x1, x2), but we consider x; as a variable on which we calculate the derivative. The
other variables are handled as a constant c¢. This means that in the case presented,
a gradient is a vector of two derivatives. If we calculate the derivatives for both
variables of the function f(x;, x;) = 3x12 + 2x; the gradient is as follows:
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200 [

X2

10 -10

X1

Fig. 2.10 Function 3)612 + 2x2 used in gradient example

Table 2.14 Gradient calculation of function f(x;, xp) = 3x12 + 2xp
SG,x2) fGx)

X1 X2 VT Tdvn Vfx,x) =
(2x1, 1)

0 0 0 1 0, 1)

1 1 2 1 2,1

2 2 4 1 4, 1)

3 3 6 1 6, 1)

Vf(xg, x2) = (2xyg, 1).

This means that if we move on the x; axis, the value will decrease or increase, but if
we move on the second axis, nothing changes. It makes sense if we look at the plot
in Fig.2.10. Calculate the gradient for a few values of x| and x,. In Table 2.14 a few
gradients of the same function are calculated. We see that the value of x; increases
when the value of x;, does not change at all. The gradient has higher values when the
change is bigger. It has a 0 at the function’s local maximum.

2.5 Fuzzy Logic

In this section we explain the basics of fuzzy logic. We use it in the clustering chapter.
It consists of two main terms: membership function and fuzzy set. Fuzzy logic is
about perception of not well-precision terms. To give just a simple example. What
does it mean that someone is tall? Everyone will give a different answer. There are
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Fig. 2.11 Weather 1
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plenty of real-world examples of fuzzy logic usage. Fuzzy logic is mapping those
problems to numbers that we can use in machine learning methods.

Example 11 (Weather) Let’s take the weather. If someone says it is warm, then
what does it really mean? Is it 70 °F/30 °C or is it already hot? Each person has a
different perception and for someone who lives in Scandinavia it could be already
hot, but for someone who lives in India it would be just warm. The possible options
of interpretation are called the universe of discourse. Let us formalize it. If we say
that the temperature outside is 70 °F/30 °C each person can give a note on the scale
from O to 10 of how warm it is (or from O to 1). Let us take just an individual for now.
We can ask for the perception of temperatures between 8 and 40 with an interval of
4. It could look like it is shown in Fig.2.11. In this case 28 °C would be the most
preferable temperature in case of warm conditions.

Let the temperatures be a set X and the warm perception a fuzzy set A. The function
that assigns a value from set X to a value from set A is called membership function
pea(x):

ma X —[0,1]. (2.15)

We have only three possibilities of values that the membership function can assign
to x:

1. wa(x) = 1 means that x is fully a member of A; x € A,
2. na(x) = 0 means that x is not a member of A; x ¢ A,
3. 0 < pa(x) < 1 means that x is partially a member of A.

In Example 11 the set X contains values like: X = [8, 12, 16, 20, 24, 28, 32, 36, 40].
The fuzzy set A has a special notation that is unique. The general equation of fuzzy
set A is:

A=Y @ (2.16)
i=1 !
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For Example 11 is s follows:

A 0 02 05 07 09 1 08 06 03
I I T T YRR TR T THR T

It is a specific type of notation as we have a membership function value at the top
and the x; of set X at the bottom. It cannot be divided as it is done in regular fractions
as it is only a representation of the relation of perception ([0, 1]) to the real-world
values X.

Membership function shown in Fig.2.11 is custom and applies only for exact
example. We have several well-known membership functions that are commonly
used. A function that responds to a non-fuzzy set is:

1, ifx=Xx

. 2.17
0, ifx #% @17

malx) =

It is called a singleton membership function. Some popular membership functions
are presented in Fig.2.13. In Fig.2.13a Gaussian membership function is shown.
The temperature example that we mentioned above can be an example of a fuzzy set
with a Gaussian membership function. In an ideal case, it would look like a Gaussian
membership function. Another popular one is the membership function of types (see
Fig.2.13b). It looks like a logistic function. It is not a rule, but this kind of function
is commonly used in cases where we have values that are close to a or ¢ as we had in
Example 5. The membership function shown in Fig.2.13c is similar to the Gaussian
membership function. It would be sharper if we could leave it in case of a fuzzy set.
It is used also in similar cases like it is in the Gaussian membership function. The
last corresponds to a situation in which we have a stable assignation to most values
of x, but at some point a it stops being valid and the membership drops to 0.

2.6 Dissimilarity Measures

This section is related to the measures of similarities between objects. When we take
two objects, we can measure the similarity of both objects using features x;; and x;,.
To be precise, it is the measure of dissimilarity known as p(X), where X is a set
of feature vectors. In the mathematical approach, a dissimilarity measure needs to
follow the steps:

Vx,GXp(xrv xr) = O,

Vx,.,xSEXA,r;&s:O(xra Xg) = p(xr, X5),

p(xra xs) =0% Xr = Xg,

Vx,.,x;,x,eX,r;és;ﬁt,O(xr’ Xg) < p(xp, X5) + pxg, X¢),

where x,, x;, x, are features. The dissimilarity measure is also known as the distance
measure d(x,, x;). The most popular measure is the Euclidean distance. The generic
equation is as follows:
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Fig. 2.12 Three objects
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PMin (X, Xg) = (2.18)

It is also known as the Minkowski distance. In the above equation d is the dimension
number. An exemplary method that calculates it is shown in Listing 2.4. To simplify
the process, let’s assume that we have two features only (d = 2):

Ouin(Xrs X5) = v (61 — X51)2 4 X2 — X52)2. (2.19)

Example 12 (Cars) Let us take three different cars: Toyota Corolla (x,), Ford Mon-

deo (x7), and Porsche Panamera (x ). For each car, we take two features: the acceler-

ation time to 100 km/h and the fuel consumption per 100 km. It is shown in Fig.2.12.
The distances between each pair of cars can be calculated like following:

P, x) =/ (42 —10.1)2 + (15 —5.2)2 ~ 11.44

Py xp) =/ (42— 7.9) + (15 — 10.0)? ~ 6.22

o, xp) =+/(10.1 = 7.9)2 + (5.2 — 10.0)2 ~ 5.28

Based on the calculations we know that Ford Mondeo is more like Porsche Panamera,
even it sounds weird. The most similar cars are Toyota Corolla and Ford Mondeo.
We should not take this comparison seriously, as comparing Corolla with Panamera
sounds unreasonable for someone who is interested in cars. The Euclidean distance
can be easily calculated using Python as shown in the Listing 2.4.
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palx)

pa(x) = exp(~(===)), (2.20)

x
(a) Gaussian membership
function
2
3 forx<a,
s _ 2(%2 fora<x<b,
Halxiabye) = 1-2(£)% forb<x<g,
1 for x >c.
B ¥ . (2.21)
(b) Membership function
of s type
=
N 0 forx<a,
(x50 b,c) = i fora<x<bp,
HalX8,0,0) = &£ forb<x<g,
0 for x > c.
! (2.22)
(c) Triangular membership
function
x®
<
= 1 forx <a,
yﬁ(x;u,b) = Z%i fora<x<b,
0 for x> b.
P ) (2.23)
(d) Membership function of
L type

Fig. 2.13 Few popular membership functions
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Table 2.15 Popular distance metrics

Measure name Equation
Manhattan distance PMan (X, X5) = Y iy X — X5i] (2.25)
Chebyshew distance pch(Xr, Xg) = MaXi<i<p |Xr; — X5 | (2.26)
Frechét distance p(xr, xg5) = Z;j:l % 2% (2.27)
Canberra distance p(xp, x5) = Z;-j: 1 % (2.28)
Post office distance Ppos (X7, Xg) = { PNin (X"O)J(r)f)m Sfii;l forar7.
(2.29)

. P X il

Bray-Curtis distance [2] Poe (X, Xs5) = A (2.30)

I math.sqrt(abs ((int (x[0])—int (v[0]))*(int (x[0])—int (v [0]))+(int(x[1])—int
> (vI1]))*x(int (x[1])—int (v[1]1))))

Listing 2.4 Euclidean distance calculated with Python

We have more than just the Euclidean distance. The most popular distances can
be found in Table 2.15. The general approach to the calculation for each distance
is the same as in our previous example. For better understanding, we calculate the
Manbhattan distance for the previous example. This distance is also known as the city
block distance or the taxi distance. For two objects it can be calculated as follows:

PMan (X7, xs) = |x1 — Xs1| + %2 — Xs2]. (224)

Pyan (Xp, X)) = [42 = 10.1] + [15 = 5.2 = 15.1
Puan (X, X7) = 4.2 —7.9] + 15 — 10.0] = 8.7
Puan (e, Xp) = [10.1 = 7.9] + 5.2 — 10.0] = 7

Manhattan distance and Minkowski distance results for our car example are similar.

The numbers are different, but the relationship between each distance is almost the
same. We can calculate the values of each distance shown in Table 2.15. It is not the
full list of distances. More metrics can be found in [3-5].

For Further Reading

1. James G, Witten D et al (2023) An introduction to statistical learning: with appli-
cations in Python. Springer

2. LiuY (2024) Python machine learning by example: unlock machine learning best
practices with real-world use cases, 4th edn. Packt
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Springer

Bruce P, Bruce A, Gedeck P (2020) Practical statistics for data scientists, 2nd edn.
O’Reilly

Kar R, Le D-N, Mukherjee G et al (2023) Fuzzy logic applications in computer
science and mathematics. Wiley-Scrivener
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Chapter 3 ®)
Unsupervised Learning st

Unsupervised methods are based on data sets that do not contain labels. This means
that the algorithms are learning only using feature vectors. This group of learning
methods is also known under different names. It depends on the context where it is
used. Unsupervised learning can be called learning without a teacher. It is the opposite
to learning with a teacher, supervised learning. Unsupervised learning is also known
as partitioning, segmentation, typology, numerical taxonomy, or clustering. The last
term is one of the most commonly used, aside from unsupervised learning. A cluster
is a set of elements/objects of the same label. Compared to supervised methods, the
label used here is based on similarities between elements of each cluster. It means
that some elements are more similar to other elements than to other elements. In other
words, the goal of the clustering method is to find groups of objects that are most
similar to each other. It is important to mention that if we say label in the context
of unsupervised learning, we mean the testing part of a method. Labels are assigned
during the learning phase. Each element/object belongs to a group. Each group has
its own label that is different for each group. There are three major types of clustering
methods: distributed, density-based, and hierarchical. Distributed methods are based
on data distribution in the feature space. The second type is about the density or
easier neighborhood elements in feature space. Hierarchical clustering is based on
the hierarchy of elements in the training data set. This kind of method creates a
dendrogram as output. Apart from the methods we describe in this chapter, there are
a few terms that need more explanation first. Sometimes it can happen that some
elements do not fit into any cluster. Such elements are known as noise, outliers, or
errors. A popular approach is to find just one cluster of elements that are most similar
to each other. Filter the outliers from the data set. The density-based clustering method
explained later in this chapter works in this way. In the next section, we explain
how to measure the quality of the clustering method using different quality metrics
based on heterogeneity, homogeneity, and indices. A separate topic is the number of
clusters that we want. There is a way to get the best number of clusters k£ based on
the computation cost and the mentioned metrics. In pattern recognition, clustering

© Springer Nature Switzerland AG 2026 63
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methods have many use cases. One of the most popular is image segmentation. In the
last section of this chapter, we show how to implement a simple image segmentation
method using the k-means clustering method.

3.1 Distributed Clustering

In this section, we explain a few methods of distributed clustering. We have divided
those into three groups: k-means, fuzzy, and possible. Most distributed clustering
methods are extended or modified algorithms of the methods presented in this section.
We start with k-means, which is the most known clustering method. More complex
methods are presented in the next two sections.

3.1.1 K-Means

K-means is also known as a hard c-means algorithm (HCM) and is one of the simplest
clustering methods. The goal of this algorithm is to assign each element of the training
data set to a cluster in a binary way. This means that an element can be fully assigned
to only one cluster. This is a strict (hard) type of assignation. All k-means-based
methods are iterative algorithms and consist of few parts that are the same in each
case:

1. choose the entrance cluster centroids,

2. calculate the membership matrix U,

3. calculate new centroids matrix V,

4. calculate the difference between the previously calculated membership matrix U
and the new calculated in the current iteration.

Each step is described in the following subsections.

Entrance cluster centroids

This step is done only once. In most methods, the center of each cluster needs to
be chosen before the algorithm starts. Such a center point is also called a centroid.
The two most popular ways to do it are to set it randomly or set fixed values. Cluster
centers should be chosen from values that are between the minimum and maximum
values of each feature. We rarely have the same cluster centers that are at the entrance
and when the algorithm finishes the calculations. We can set random centers as shown
in Listing 3.1.
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def select_centers () :

This method selects randomly <centroids

:return: centroids
W

return np.prandom.rand (groups , len (data_set [0]))

Listing 3.1 Random centroids generation

We set random centers based on the feature space that is stored in ___space. It
represents the minimum and maximum values of each feature. In the Listing 3.1,
the feature space is defined as two-dimensional. A random centroid is generated for
each group in each iteration.

Membership matrix U

The second part of each algorithm is the calculation of the membership matrix U.
This part needs cluster centroids to calculate the matrix U. The previous step of
centroid generation can be used in most methods in the same way. The membership
matrix calculation step is slightly different in each clustering method. The matrix U
consists of ¢ rows and k columns, where c is the number of groups/clusters we want
to have and k is the number of elements in the training data set. We iterate through
i in rows and j through columns. An element of U is w;;. We already used the
symbol u in the section about fuzzy sets. We call it a membership function. Ideally,
it corresponds to clustering as we measure whether or not each object is a member
(assigned) of a group. Let us assume that we want to distinguish only two groups for
now. The membership/assignation can be a value in the range of 0—1. In the case of
k-means, it is the value of 0 or 1. A matrix U with two groups and five elements can

look as follows:
U= 01010
—{10101|"

It means that the object x; is assigned to the group ¢ = 2, x, to the group ¢ = 1,
and so on. We calculate the membership matrix for each object in the training data
set. In the current example, there are only six objects. The value of the membership
function can be calculated in HCM as shown in Eq. 3.1.

V) — 3.1
Hix 0 in other case. G-

o _ {1 if d(xg, vi) < d(xg, v;), foreach j # i,
The assignation is done in a simple way. For each object x;, we measure the distance
from it to each group center. The closest distance wins. As shown in the Listing
3.2 we set the variable minimal_distance the distance of the object x and the
centroid of the first cluster. The group_ id is the id to which the object x is assigned.
It may change during the for loop if the distance between x and other centroids.
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def calculate_u(x, centers):

This method calculates membership of the object x.

:param x: object that we want to set the cluster
membership id
:param centers: centroids
:return: Membership vector
W
if calculate_distance (x, centers [0]) <
calculate_distance (x, centers [1]) :
return [1, 0]
else :
return [0, 1]

Listing 3.2 HCM membership matrix calculation

The value 1 is assigned to the group_1id in line 8.

New centroid v; calculation

Centroids are calculated in a similar way in most methods. The number of groups c;
is the same as the number of centers v;, wherei =1, ..., c:

V =[v,v2,...,0.]. (3.2)

Each group center is calculated separately as follows:

M ()
Py /‘Liltc Xk (3.3)

v = = —

- M (1)
D et Mk

We use the assignation u (u) and the feature vector x; (__data_set) to calcu-
late the new group centers. The code that calculates new centers is presented in
Listing 3.3.

def calculate_new_centers (u):

noon

This method calculates new centroids of each cluster.

:param u: membership matrix
:return: new centers

new_centers = []
for ¢ in range (groups) :
new_centers .append (
np.divide (np.dot (np.square (np.array (u)l[:, cl),
data_set), np.sum(np.square (np.array (u)l:, cl))))
return new_centers

Listing 3.3 Centers calculation

As Eq.3.3 is a bit more complex compared to the previous ones used in this chapter,
we divided the loop in line 3 into two parts: numerator as u_x_vector and denom-
inator as u_scalar. Both variable names indicate the type of value they contain
and the variables involved. We have two loops, one to go through all centroids that
we need to calculate, and the second loop to go through all objects in our training
data set.
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Difference measure

We calculate the membership matrix from the previous step as well as new cen-
troids in each iteration until the differences between the changes in both are small
enough. The differences calculated to stop the loop are calculated as it is shown in
Listing 3.4.

def calculate_differences (new_membership , membership):
W
This method calculates the differences between the
old and new membership matrix.

:param new_membership: new membership matrix
:param membership: current membership matrix
:return: the difference between two membership

matrices

wonon

return np.sum(np.abs (np.subtract (membership ,
new_membership)))

Listing 3.4 Differences calculation

The difference level at which we stop the loop is set depending on the data set and
feature space. In our example, which we show next, it is set to 0.5. To calculate the
differences, we take the current membership matrix and the newly calculated ones
and compare both rows and columns.

Example 1 (Aircraft clustered binary) Let us take an example of aircraft to explain
how k-means clustering works. We collected ten popular aircrafts in Table 3.1. We
have four columns: the name of the aircraft, the distance the aircraft can reach in one
full tank, the number of seats, and the type of the aircraft. The first and last columns
are used for the description only. The second and third columns are our features.
We can plot them to see how easily we can divide them into clusters. A plot of the
range of distances from the aircraft and seat count is shown in Fig. 3.1. There are two
groups, one in the top right part of the plot and one in the bottom left part of it. It
looks like an easy task to see that we have two types of aircraft: one with small seat

Table 3.1 Aircraft divided by type, range and seats count

Aircraft name Distance range (km) Seats count | Aircraft type

Cesna 510 Mustang 1940 4 Private jet

Falcon 10/100 2960 9 Private jet

Hawker 900/900XP 4630 9 Private jet

ATR 72-600 1528 78 Medium size aircraft
Bombardier Dash 8 Q400 2040 90 Medium size aircraft
Embraer ERJ145 XR 3700 50 Medium size aircraft
Boeing 747-8 14,815 467 Jet airliner
A380-800 15,200 509 Jet airliner

Boeing 787-8 15,700 290 Jet airliner

Boeing 737-900ER 6045 215 Jet airliner
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count and short distance range, and the second which are huge aircraft that can fly
long distances. Using k-means, the steps we have described would look as follows:
Before moving on to the first step of the method, we should normalize the data set
to move the data to a common scale for each feature (Table 3.2a). In the first step
of the method, we need to generate some random centroids. Let us assume that we
have two centers randomly chosen for v1 = (0.2, 0.2) and v, = (0.5, 0.5). As we
can see, one centroid is quite close to a group of objects in the bottom-left corner.
The second centroid is almost in the middle of the feature space (see Fig.3.1b). Let
us calculate the membership matrix with both centroids. For the first object x@, we
calculate the following distances:

d(x?, ¢;) = d((0.0078, 0.1235), (0.2, 0.2)) = 0.20678,

d(x©, ¢;) = d((0.0078, 0.1235), (0.5, 0.5)) = 0.6196.
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Table 3.2 Aircrafts data set normalized

Aircraft name Distance range (km) Seats count
Cesna 510 Mustang 0.007859 0.123567
Falcon 10/100 0.017682 0.188535
Hawker 900/900XP 0.017682 0.294904
ATR 72-600 0.153242 0.097325
Bombardier Dash 8 Q400 0.176817 0.129936
Embraer ERJ145 XR 0.098232 0.235669
Boeing 747-8 0.917485 0.943631
A380-800 1.000000 0.968153
Boeing 787-8 0.569745 1.000000
Boeing 737-900ER 0.422397 0.385032

The distance is shorter for the first centroid. It means that we should binary assign
the membership of the first object into the first cluster. A different case is for object
X7.

d(x©, ¢)) = d((0.9174,0.9436), (0.2, 0.2)) = 1.03333,

d(x?, ;) = d((0.9174, 0.9436), (0.5, 0.5)) = 0.60918.

This object should be assigned to the second cluster. After going through all the
objects in the first iteration, we get the membership matrix as

po_[t111110001
"Z10000001110]"

The new centroids need to be calculated in the next step. Using Eq. 3.3, we get new
centroids:

[0.47151277 1.06993631 ]
6

v = = [0.07858546 0.17832272] ,

[2.90962672 3.29681529]
v = 7 = [0.72740668 0.82420382] .

In the next iterations, the membership matrix does not change, but the centroids still
move. The reason for the absence of change is a very simple example and the small
data set used. Finally, we get

vr = [0.12770138 0.20785259)] ,

vy = [0.82907662 0.97059448] .
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The final centroids are given in Fig. 3.1c. The centroids moved from the first position,
especially the second centroid moved from about the middle of the space into the
right-top corner. This seems logical because one of the groups of objects is placed
in this area.

3.1.2 Fuzzy C-Means

The main concept of fuzzy clustering is to assign objects to a cluster using fuzzy logic.
In the previous method, the column of the membership matrix contains one positive
value, and the rest is filled with zeros. In fuzzy clustering, the values in columns are
between zero and one. Each column sums up to one. There are many implementa-
tions of fuzzy clustering. One of the most popular is the ISODATA method [1], where
ISODATA stands for the Iterative Self-Organizing Data Analysis Technique. Other
popular fuzzy clustering solutions are Gustafson-Kessel or Fuzzy Maximum Likeli-
hood Estimates method [2]. In this section, we implement the ISODATA method as
an example of fuzzy clustering.

The fuzzy clustering method process looks the same as in hard clustering. The
differences are in the way the centroids and the membership matrix are calculated.
The elements of the membership matrix can be calculated with Eq.3.4.

-1

[ Oy v\
s Z(d(xk,v») ' Gb

Jj=1

In Eq.3.4, d(x, v;) is the distance between an object and the centroid. We calculate

the if for each centroid. For two and more centroids, one value of the equation %
»Uj

is always 1.0, because we divide the same distance values. In Python, it can be
implemented as shown in the Listing 3.5. For a given object x and centroid number
i. We use the same method for calculating the distance as in HCM. It is again the
Euclidean distance of two objects in a feature space. The variable m is called a
fuzzifier and allows us to flatten the plot of the fuzzy membership function. It is
usually set at 2.

1 def calculate_u_fcm (x, centers , group_id):

wonon

This method calculates membership of the object x.

:param x: object that we want to set the cluster
membership id

6 :param centers: centroids
:param group_id: cluster id

8 :return: Membership matrix

W

10 distance_centers = 0

11 for group in range (groups):

12 if group != group_id:

13 distance_centers += calculate_distance
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(x, centers[groupl)
distance_sum = 1.0 + (calculate_distance (x, centers
[group_id]) / distance_centers) % m
return distance_sum x%x —1

Listing 3.5 FCM centers calculation method

The centroids are calculated a bit differently compared to HCM. We add the fuzzifier
variable here and this is actually the only difference between both equations (see
Eq.3.9).
X )"
il ey

The difference in Python implementation is none if we assign the value of 2 to the
variable m. In the Example 3 for simplification, we set m = 2.

(3.5)

Example 2 (Aircraft fuzzy clustered) Having the same random centroids as in the
previous example, we use Eq. 3.4 to calculate the membership values:

0.206787\ '
por = (12 + 56196 ) = (1+0.11135"" = 0.8998,

0.6196 2\ '
=1 = 0.1002.
Hu ( * 020678 >
The values sum to 1 and are not binary compared to k-means. It is more precise and
can give us more information. Take a look at the values of the last four objects in the
membership matrix after the first iteration.

Ul = 0.899 0.908 0.866 0.956 0.977 0.952 0.257 0.276 0.247 0.186
17 10.100 0.091 0.133 0.043 0.022 0.047 0.742 0.723 0.752 0.813 |

The values of the last four objects are not polarized as the values of the other objects.
We see that some objects are assigned to the cluster with confidence between 72
and 81%. What if the membership value is a two-cluster case and is close to 50%?
This might mean that we should increase the number of clusters, especially when we
have more such objects. We can also assume that such an object is just noise. The
centroids are calculated similarly, and for the fuzzy clustering example, the values
can be calculated as

[0.61948325 1.11511858]
v = = [0.11466 0.2064] ,
5.4026

_ [1.63266 1.8573] 0.6966 0.79248
2= aaeas T 06960 079248
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The final centroids are a bit different from the k-means. Both centroids look a bit
more precise because the membership values are not binary:

vi = [0.11240531 0.19895848] ,
vy = [0.83355666 0.96018678] .

The final membership matrix assigns the objects x7, xg, x9 to the second cluster with
higher confidence. The last object is the one placed in the center of the feature space
in Fig.3.1.

Ueo ' — 0.988 0.992 0.983 0.990 0.992 0.998 0.006 0.019 0.077 0.792
final = 10,011 0.007 0.016 0.009 0.007 0.001 0.993 0.980 0.922 0.207 |

3.1.3 Possibilistic C-Means

The possibilistic distributed clustering was introduced in [3] and is a modification
of the hard version. We used the fuzzy version in the first phase of the PCM to
avoid total randomness. PCM works better compared to FCM and HCM if the data
we have consist of noise data, but to be more robust, it should be preceded by a
few iterations of the FCM method. The first difference that is visible is the way
the distances are measured. In PCM we use the Mahalonobis distance instead of
the Euclidean measure. It is known that the Mahalanobis measure often gives better
results. In this case, a better means that we do not care about the standardization
of the data if we have more than two features. The general difference can also be
plotted as shown in Fig. 3.2. The covariance matrix standardizes the data set taking
into account the correlation. This means that the redundant information is not taken
into consideration, as it is in Euclidean distance. The membership function is defined
as

Fig. 3.2 Distance measures
difference comparison

(a) Euclidean distance (b) Mahalanobis distance
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-1

2
Diza\ ™"
Wi = 1+( n’f/‘) : (3.6)

where D4 is the Mahalonobis distance and 5 is a value that is the membership
possibility for each cluster. The membership function can be implemented in Python
as in the Listing 3.6.

def calculate_u_pcm (membership , centers):

This method calculates membership of the object x.

:param x: object that we want to set the cluster
membership id
:param centers: centroids
:return: Membership matrix
W
new_membership = np.zeros ((len(data_set), groups))
for group in range (groups):

mah_distances = calculate_mah_distance(group,
centers)

group_eta = calculate_eta (membership , group ,
mah_distances)

new_membership [:, groupl] = (1.0 + (mah_distances

/ group_eta)) xx —1
return new_membership

Listing 3.6 Membership function Python implementation

The Mahalanobis distance is calculated as
D2y = llxe — vl = CGa — v)T Al — vo). (3.7)

The matrix A is the covariance matrix that flattens the distance between the objects
as shown in Fig.3.2. It can be calculated in Python as in the Listing 3.7. The matrix
is used between two distance measures of two objects.

def calculate_A ():

This method calculates the covariance Matrix

:return: Covariance matrix A

variance = np.var (data_set , axis=0)

ABcov = np.cov(data_set[:, 0] *x data_set [:, 1])

R = np.array ([[variance [0], ABcov], [ABcov , variance
[1111)

return R *x*x —1

Listing 3.7 Covariance matrix calculation for PCM method

Finally, the Mahalanobis implementation can be done in Python as in Listing 3.8.

def calculate_mah_distance (group , centers):

nwonon

This method calculates the Mahalanobis distance

:param group: group id
:param centers: centroids
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:return: Mahalanobis distance

W

dmc = data_set — centers [group]

dmca = np.dot (data_set — centers[groupl, A)

distances = lambda dmc, dmca: [np.dot (dmcal[i], dmc
[i]l]) for i in range (dmc.shape [0])]
return distances (dmc, dmca)

Listing 3.8 Mahalanobis distance implementation

The n parameter can be set the same for every cluster or calculated separately for
each cluster. If we want to calculate it separately, we should use the equation:

J— ZI]CVI:l(Mik)mDizkA' (38)
Z;ﬁil(ﬂik)m

The 7n also uses the Mahalanobis distance. We can think of this parameter as the
importance factor of a cluster. The parameter n can be fixed for each object or
calculated for each case separately, as shown in Eq. 3.8. The simple implementation
of n is given in the Listing 3.9.

def

calculate_eta (membership , group , mah_distances):
W

This method calculates the eta parameter

:param membership: membership matrix

:param group: group id

:param mah_distances: Mahalanobis distance
:return: eta parameter

W

return np.sum ((membership[:, groupl =% m) =x
mah_distances , axis=0) / np.sum(membershipl[:, groupl]l
% m, axis=0)

Listing 3.9 PCM eta parameter calculation

The algorithm is divided into two sections. The variable F is the number of iterations
that are executed before we go into the possibilistic method. The first part is a copy-
pasting of the FCM method from the previous section. The second part looks a bit
different.

def

cluster_pcm (membership , centers):

This is the main PCM clustering method

:param membership: global membership matrix
:param centers: global centroids
:return: membership matrix , centroids
W
new_centers = centers
new_membership = membership
for f in range (F):
membership = []
for i in range (len(data_set)):
membership_vector = []

for k in range (groups):
membership_vector . append (calculate_u_fcm
(data_set[i], new_centers , k))
membership . append (membership_vector)
new_centers = calculate_new_centers (membership)
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new_membership = np.array (membership)

difference_limit_not_achieved = True
while difference_limit_not_achieved:
new_membership = calculate_u_pcm(new_membership ,
new_centers )
old_centers
new_centers
new_membership)

new_centers
calculate_new_centers (

if get_centers_difference(old_centers,
new_centers) < error_margin:
difference_limit_not_achieved = False
return new_membership , new_centers

Listing 3.10 Main PCM method implementation

The error rate is a stop criterion that depends here on the changes of the centroids.
Depending on the size of the data set, the differences in membership values are very
often made on each iteration, and if we sum up all the changes, it might be that
we never reach the stop criterion. The differences are calculated on the basis of the
centroids’ changes rather than the membership matrix changes.

Example 3 (Aircraft possibilistic clustering) In this example, we use the same data
set as in the previous two sections. The fuzzy part of the method returns after two
iterations of the membership matrix as follows.

0.019 0.011 0.023 0.016 0.013 0.001 0.943 0.917 0.934 0.344

U |:0.980 0.988 0.976 0.983 0.986 0.998 0.056 0.082 0.066 0.655:|
fem = .

The centroids are already set in a good position after just two iterations:
vy = [0.1042 0.1944]
vy = [0.8096 0.9445] .

Both are adjusted with the PCM part of the algorithm. In the first step of the PCM
part, we should calculate the A matrix that uses the entire data set, because we
need to calculate the correlation between each object. The matrix for our data is the
following:
A |:7.89464944 6.69665317]
6.69665317 7.75894855 |

The second step is to calculate the Mahalonobis distances. For the first object, it is

0.007859] _ [0.1042
Dy = <[o.1 235 67] - [0.1 o1 4} [0.007859 0.123567]) *

[7.89464944 6.69665317] [0.007859} B [0.1042

*16.69665317 7.75894855 | | 0.123567 0.1944] = 0.20355.
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For the second cluster, the distance equals Djy = 19.11895 and is much greater than
the distance for the first group. It is easy to assume that the closer distance also means
a greater membership value. All distances are given in the following matrix:

[ 0.2035 19.1189]
0.0661 17.4034
0.0210 15.1151
0.0283 16.4173
0.0112 15.213
0.0102 14.6471
17.7387 0.0906
20.2641 0.3508
11.77 0.2998
| 1.8938 6.5137 |

Dijs =

The last step before we get the membership value is the cluster probability  param-
eters that need to be calculated. We have two 7 values, one for each cluster. The
equation consists of two sums [see (3.8)]. For ny we take the Mahalnobis distance
and multiply it by the square of the membership values of the first cluster. The sum
is divided next just by the sum of the squares of the membership values of the first
cluster. Respectively for ;.

0.980567352 % 0.2035 + 0.98832 % 0.0661 + - - - + 0.65582 % 1.8938
o = =0.2216,
0.980567352 + - - - 4+ 0.65582

_0.0194% % 19.1189 + - - - + 0.3442% % 6.5137

_ — 0.5268.
n 0.01942 1 - 1 0.34422

The probability parameter is greater for the second cluster than for the first. It might
be like that because the objects in the second cluster are not so close to the centroid
compared to the first cluster. The fourth step is to calculate the membership matrix.
Having the  and Mahalanobis distance values, it is easy to calculate. The calculation

is as follows: _1
0.2035
Moo = 1+ = 0.304852.

0.2216

The final membership matrix is shown below.

U. — 0.5425 0.9183 0.9911 0.9839 0.9975 0.9979 0.0002 0.0001 0.0004 0.0135
7= 10.0008 0.0009 0.0012 0.001 0.0012 0.0013 0.9713 0.6927 0.7554 0.0065 |

The centroids v and v, are calculated in the same way as in the previous two methods,
and for PCM we get
v = [0.0899 0.1857] ,

vy = [0.8378 0.9656] .
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Table 3.3 Membership matrix for three distributed clustering methods

X0 X1 X2 X3 X4 X5 X6 X7 X3 X9
Uno 1 1 1 1 1 1 0 0 0 1
Unt 0 0 0 0 0 0 1 1 1 0

Uro 0.9881 | 0.9928 | 0.9839 | 0.9902 | 0.9921 |0.9985 |0.0061 | 0.0198 | 0.0771 | 0.7926
Uri 0.0119 |0.0072 |0.0161 |0.0098 | 0.0079 | 0.0015 | 0.9939 | 0.9802 | 0.9229 | 0.2074
Upo 0.5425 10.9183 |0.9911 | 0.9839 | 0.9975 | 0.9979 | 0.0002 | 0.0001 | 0.0004 | 0.0135
Upi 0.0008 | 0.0009 | 0.0012 | 0.001 |0.0012 |{0.0013 |0.9713 | 0.6927 | 0.7554 | 0.0065

Both are not as different compared to previous methods, but the membership matrix
is the totally different.

3.1.3.1 Comparison

Comparison of the results of distributed methods can be major if we compare HCM
to FCM, or minor if we compare FCM to PCM. 1It is true that the more fuzzy or
possibilistic the method is, the more precise results we get. An overview of the
membership matrix is given in Table 3.3. What is important, based on the membership
values, is that all results assign each object to the same cluster in each of the three
methods. It means that it does not differ so much for such a small data set, but can
give us more information, especially to the number of clusters. More values closer
to 0.5 in the fuzzy set or closer to 0 in the case of the possibilistic method, then the
probability of increasing the number of clusters is higher.

3.2 Hierarchical Clustering

Hierarchical clustering methods are based on partitioning. A partition is just another
name for a cluster used in hierarchical methods. We can imagine a nested data set as
shown in Fig.3.3. The main data set includes a few smaller sets that include a few
smaller sets and so on. On the other hand, we can define it as a merge or fusion of the
smallest data sets into bigger ones until we reach the main data set. Let us imagine
that we have a list of some life forms as shown in Table 3.4. We can distinguish each
animal on the basis of a few criteria. It is easy to see that animals can be presented
as a tree of types, subtypes, and so on. We can also present such life forms based on
some other features, such as the nested set in Fig.3.3. Each of the life forms listed
in Table 3.4 can be assigned to the group Animals. We have four mammals, four
reptiles, and more on the list. Each group, as Mammals, has two different types like
Marine and Land mammals. In other words, starting from the main cluster Animals
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Mammals Reptiles
(a)
A Animals —‘
Land
Water: 3,4,5,6,
1,2,9, 7,8,13, W
10,11,12 14,15,16
Mammals: Insects
— = — 13,14,
Dolphin Whale Crawling 15,16
v T 13,14 W
21 s Fish:
] .
z | g 9,10, — Snail Earthworm
5|2 [ 11,12 .
80 River . :
&  Sea [11,12 Non-insects: Flying
9,10 Pike [ 345678 [ 1516 |
Eel  Mammals: Housefly Bee
Shark [ 34 i
Tune ar German Persian Reptiles:
cat
Shepard ‘ 5,6,7,8 |
Vegetarians: Meat:
5,6 [ 78 ]
v Iguana Tortoise Anaconda Gecko
(b)

Fig. 3.3 Example shown in Table 3.4 as nested sets (a) and dendrogram (b)

we can divide it into smaller groups at each stage until we divide it into clusters with

one animal each.

Hierarchical methods can do it both ways. This means that we can also merge
small partitions into a larger cluster [4]. Hierarchical methods can be divided into
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Table 3.4 A few life forms that can be grouped by the criteria

Id Group Subgroup | Animal 1d Group Subgroup | Animal
name name
Mammals | Marine Dolphin |9 Fishes Sea Shark
2 Mammals | Marine Whale 10 Fishes Sea Tune
Mammals | Land German 11 Fishes River Pike
Sheppard
4 Mammals | Land Persian 12 Fishes River Eel
cat
5 Reptiles | Vegetarian | Iguana 13 Insects Crawling | Ladybug
Reptiles | Vegetarian | Tortoise | 14 Insects Crawling | Earthworm
7 Reptiles | Meat Anaconda | 15 Insects Flying Bee
eaters
8 Reptiles | Meat Gecko 16 Insects Flying Housefly
eaters

two subtypes: agglomerative and divisive. The first one is about merging/aggregating
partitions and the second is about dividing/splitting sets into smaller ones.

3.2.1 Agglomerative Clustering

Agglomerative clustering [5, 6] is also known as the “bottom-up” clustering method,
because it merges smaller clusters into larger ones. The method is easy to implement
and even easier to understand. Here, we use the Euclidean distance measure to create
the distance matrix. The agglomerative clustering method is divided into three steps:

1. calculate current dendrogram distance matrix,
2. get lowest distance from matrix,
3. merge clusters/elements into clusters.

It is repeated until we have one cluster or reach the expected cluster count.

Distance matrix

In the agglomerative matrix, we calculate the distances between each object in the
first step. The distance matrix is the size of N x N, where N is the number of objects
in the data set. Obviously, the diagonal values are equal to zero. The Listing 3.11 is
one of the possible implementations of how to obtain the distance matrix.
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def calculate_dendogram_distance_matrix_diamna () :
W
This method calculate the distance matrix for diana
methods

:return: distance matrix
W
distance_matrix=np.zeros ((len(data_set), len(data_set
)))
for i in range (len(data_set)):
for j in range (len(data_set)):
distance_matrix[i, j] = calculate_distance
(calculate_centroid (data_set [i]),
calculate_centroid (data_set [j1))
return distance_matrix

Listing 3.11 Distance matrix calculation for agglomerative clustering

The goal is to find the lowest distance between two objects. These two are the most
similar to each other and should be merged into one cluster.

def get_lowest_from_distance_matrix (distance_matrix):

This method gets the lowest value from the distance

matrix
:param distance_matrix: current dendrogram
:return: lowest value index

np.fill_diagonal (distance_matrix , np.inf)

lowest_indexes = np.unravel_index (np.argmin (
distance_matrix , axis=None), distance_matrix.shape)
np.fill_diagonal (distance_matrix , O0)

return lowest_indexes

Listing 3.12 Lowest distance in distance matrix implementation

The Listing 3.12 shows how to use NumPy to find the lowest value in a matrix and
get the indices.

Merging two clusters

The merging part adds a new level to the dendrogram and sets the new clusters list
on it as in the Listing 3.13. We can also implement it in a different way and avoid
the part of level creation.

def merge_elements(current_dendrograms , merged_1list , i)
W
This method adds to the current dendrogram new object
(elements )

:param current_dendrograms: current dendrogram
:param merged_list: merged child nodes 1list
:param i: the dencdrogram 1level
:return: merged child nodes 1list
W
if disinstance (current_dendrograms [i][0], type (np.
array ([1))):

for iter in range (len(current_dendrograms [i]))

merged_list.append (current_dendrograms [i][

iter])
else :
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Table 3.5 Clusters distance measure methods

Method name Equation

Single linkage diz = min; ; d(X;, Y;) (3.9
Complete linkage dip = max; ; d(X;,Y;) (3.10)
Average linkage dip = kll ZLI 5:1 d(X;,Y;j) (3.11)
Centroid method dip =d(x,y) (3.12)

merged_list.append (current_dendrograms [i])
return merged_list

Listing 3.13 Merging two clusters in agglomerative clustering

We can stick to the current dendrogram level and merge based on it until we reach the
stop criterion, but saving each merge in the dendrogram allows us to make decisions
based on the history of the merges and gives a better overview of the method after it
is finished.

Distance matrix between clusters

We could stop here if we are fine with the number of clusters, but in most cases, we
would like to proceed. Going back to step one of the method, we need to calculate
the distance matrix again. The only question here is how to calculate the distance
between a cluster that consists of one object and a cluster with more objects. There
are methods to calculate the distances between clusters with any number of objects.
Some of such methods are given in Table 3.5. The distances can be calculated as
the minimum distance between two objects from each cluster. This method is called
the single linkage method. The opposite is the maximum distance that is used in
the complete linkage method. We also have an average distance measure, where
we take the average distance between all objects. A similar one is based on the
centroids, where the centroids are calculated as the average positions of all objects in
a given cluster. Next, we calculate the distance between the centroids of both clusters.
This method is implemented in Listing 3.14 as the simple one and is based on the
knowledge from the previous chapter where centroids were used for the calculation
of the membership matrix.

def calculate_centroid (dendrogram_elements):
W
This method calculates the centroids for the current
dendrogram part by merging the elements withimn this
subset

:param dendrogram_elements: subset of the dendrogram
:return: centroids
wonn
if type(dendrogram_elements) is 1list:

sumof =np.zeros (len(dendrogram_elements [0]))

for iter in range (len(dendrogram_elements)):

sumof =np . add (sumof ,np.array (

dendrogram_elements [iter]))
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12 if sumof .shape == (len(data_set [0]) ,len(data_set
[01)):

13 pass

14 return np.divide (sumof x1.0, len (
dendrogram_elements)*1.0)

15 else:

16 return dendrogram_elements

Listing 3.14 Centroid calculation for the agglomerative clustering method

Building the dendrogram

The dendrogram consists of levels consisting of nodes. We create a new node for
each iteration. To create a new node, we just merge two clusters into one cluster, as
shown in the Listing 3.15. This part works together with the main function of the
agglomerative method in Listing 3.16.

1 def set_current_dendrogram(current_dendrograms,
dendrograms_hist , i, j):

5 wonn
This method set the current dendrogram and change the
dendrogram history

5 :param current_dendrograms: current dendrogram
6 :param dendrograms_hist: dendrogram changes record
7 :param i: id of one of the chosen <cluster

8 :param j: id of one of the chosen <cluster

9 :return: current dendrogram and history

10 o

1 elements = []

12 hist = []

13 current_hist = dendrograms_hist[fl]

14 for diter in range (len(current_dendrograms)):

15 if diter != i and diter !=j:

16 elements . append (current_dendrograms [iter ])
17 hist .append (current_hist [iter])

18 merged_elements = []

19 merged_elements = merge_elements (current_dendrograms ,
merged_elements , i)

20 merged_elements = merge_elements(current_dendrograms,
merged_elements , j)

21 elements . append (merged_elements)

2 hist .append ([ current_hist [i], current_hist [j1])
23 dendrograms_hist .append (hist)

24 current_dendrograms = elements

25 return current_dendrograms , dendrograms_hist

Listing 3.15 New dendrogram implementation

We loop over the number of elements in the current dendrogram that includes at the
beginning just all objects. We subtract the count of the objects by 2 because we need
only this number of iterations to create the top cluster with all objects in it.

def cluster_agg (current_dendrograms):

5 nwonon

This main agglomerative clustering method

5 :param current_dendrograms: global current dendrogram
variable
6 :return: clustering history
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dendrograms_hist = [list (range (len(data_set)))]

for diter in range (len(current_dendrograms) —1):
distance_matrix =

calculate_dendogram_distance_matrix
(current_dendrograms)

[i, j] = get_lowest_from_distance_matrix

(distance_matrix)

current_dendrograms , dendrograms_hist =
set_current_dendrogram(current_dendrograms,
dendrograms_hist , i, j)

return dendrograms_hist

Listing 3.16 Agglomerative clustering main method

We use the get_lowest_from_distance_matrix () function to obtain the
lowest distance and add the new node to the dendrogram. Finally, the current level
is set as the one that needs to be merged.

Example 4 (Aircraft agglomerative clustered) In this example, we use the same
data set as in the previous clustering examples. In agglomerative clustering, we start
with many clusters that consist of one object. The first step is to calculate the distance
matrix. The distance between xy and x; is

d(x0, x1) = v/(0.007859 — 0.017682)2 + (0.123567 — 0.188535)2 = 0.066.

The distance matrix in the first iteration is as follows:

0 0.0660.171 0.148 0.169 0.144 1.225 1.303 1.041 0.490 |
0.066 0 0.106 0.163 0.169 0.093 1.175 1.254 0.981 0.450
0.1720.106 0 0.240 0.229 0.1 1.109 1.191 0.895 0.415
0.148 0.163 0.24 0  0.0402 0.149 1.140 1.215 0.994 0.394
0.169 0.169 0.229 0.0402 0 0.132 1.1 1.1750.955 0.354
0.144 0.093 0.1 0.149 0.131 0 1.083 1.162 0.898 0.357
1.2251.175 1.109 1.14 1.1 1.083 0 0.086 0.352 0.746
1.303 1.254 1.191 1.215 1.175 1.162 0.086 0 0.431 0.821
1.041 0.981 0.895 0.994 0.955 0.898 0.352 0.431 0 0.632

| 0.49 0.45 0.415 0.394 0.354 0.357 0.746 0.821 0.632 0

The smallest distance value is 0.0402 and this is the distance between the object
x3 and x4. We take these two and merge them into one cluster. The next step is to
calculate the distance matrix again, but this time for the merged objects we use the
centroid to measure the distance. Finally, we get the dendrogram as given in Fig. 3.4.
We see that the levels are not exactly drawn from the bottom in the exact time order
when these clusters were created. We merged the third and fourth objects that are
shown in the bottom right of the figure as the first one, but because of the complexity
of other merges, it looks as if we merged the objects xg, x1, x and x5 as the first
ones. This is not a mistake or error, because we still have the proper structure of the
nodes.



84 3 Unsupervised Learning
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Fig. 3.4 Aircraft example dendrogram created using hierarchical clustering. The numbers are the
aircraft ids

3.2.2 Divisive Clustering

Divisive clustering [7-9] is the opposite way to create clusters compared to agglom-
erative clustering. It is also known as Diana clustering. We divide one cluster into
smaller ones. The divisive clustering method is divided into three steps:

1. calculate distance matrix in each cluster,
2. get highest distance average,
3. split clusters.

It is repeated until we have no cluster to be divided or the expected clusters’ number
is reached. The differences are in the second and third steps.

Choose cluster to split

The method of choosing the objects to split is implemented in the Listing 3.17.
We find the highest differentiation cluster that we have set in the highest_diff
variable. This is the cluster that will be split in the next step.

def choose_cluster (current_level , distance_matrix):

nwonon

This method choose the next cluster to be divided

:param current_level: dendrogram 1level
:param distance_matrix: distance matrix
:return: chosen cluster , difference , chosen <cluster

id
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if type (current_level [0]) 1= list:
both_idx = np.array (current_level)
current = distance_matrix [both_idx [:, Nonel,
both_idx]
diff = np.sum(current) / (current.shape [0] =
current .shape [1] — len(current))
return current_level , diff , O
highest_diff = 0
cluster_id = 0
for i in range (len(current_level)):
both_idx = np.array (current_level[il)
current = distance_matrix [both_idx [:, Nonel,
both_idx]
diff = np.sum(current) / (current.shape [0] =

current . shape [1] —len (current))
if diff > highest_diff:
highest_diff = diff
cluster_id = i

return current_level [cluster_id], highest_diff ,

cluster_id

Listing 3.17 Divisive clustering—choosing objects to split

Based on a threshold di £ £ we divide the objects into clusterl and cluster2

sets in Listing 3.18.

split (split_cluster , distance_matrix , diff):
W

This method split the chosen cluster into two
clusters

:param split_cluster: cluster that needs to be split
:param distance_matrix: distance matrix

:param diff: difference of distances between objects
within the cluster

:return: two clusters
if len(split_cluster) == 2:

clusterl = [split_cluster [0]]

cluster2 = [split_cluster [1]]

return clusterl , cluster2
split_threshold = diff
both_idx = np.array(split_cluster)
distances = distance_matrix[both_idx[:, Nomnel,
both_idx]
clkeys , clcounts = np.unique (np.argwhere (distances >
split_threshold), return_counts=True)
c2keys , c2counts = np.unique (np.argwhere (distances <=
split_threshold), return_counts=True)
clusterl_counts = dict(zip(np.array (split_cluster) [
clkeys], clcounts))
cluster2_counts = dict(zip(np.array(split_cluster) [
c2keys], c2counts))
clusterl = []
cluster2 = []
choice = 0

for item in split_cluster :

if item not in clusterl_counts .keys ():
cluster2 . append (item)
continue

if item mnot in cluster2_counts .keys () :
clusterl . append (item)
continue

if clusterl_counts [item] < cluster2_counts [item]:
cluster2 . append (item)
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elif clusterl_counts[item] > cluster2_counts [item

]:
clusterl .append (item)
else :
if choice == 0:
cluster2 . append (item)
choice = 1
elsle :
clusterl .append (item)
choice = 0
return clusterl , cluster?2

Listing 3.18 Split method in divisive clustering

The code is a bit long because we loop over the cluster and keep the history of the
actions we do.

Build the dendrogram

The other methods except for the main are the same as in the agglomerative method.
The main method of the divisive clustering is given in Listing 3.19. The divisive
clustering is a bit more complex compared to the agglomerative because of the way
we choose the cluster to split.

def cluster_diamna () :

wonon

This is the main method of diana cluster method

:return: dendrogram history records

wonn

dendrograms_history =[]

current _dendrograms =[1list (range (len(data_set)))]
distance_matrix =
calculate_dendogram_distance_matrix_diamna ()

while len(current_dendrograms) != len(data_set):
current_level = current_dendrograms [—1]
current_cluster , diff , cluster_id =
choose_cluster (current_level , distance_matrix)
clusterl , cluster2 = split(current_cluster ,
distance_matrix , diff)
if type (current_level [0]) != 1list:

current_dendrograms . append ([clusterl ,
cluster2])
else :
rest = current_level.copy ()
rest .pop(cluster_id)
rest .append (clusteril)
rest .append (cluster2)
current_dendrograms . append (rest)
hist = [{"acesor": current_cluster , "childs":
[clusterl ,cluster212}]
dendrograms_history .append (hist)
return dendrograms_history

Listing 3.19 Divisive clustering main method

In the main method code we invoke the distance matrix method once, choose the
group to split, do the split, and in the last part of the code we save the changes made
to the current dendrogram level. The changes are saved in the variable hist.
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3.3 Density Based Clustering

The density-based clustering is based on the neighborhoods. DBScan is one of the
density-based clustering methods that we cover in this chapter. It is similar to hierar-
chical clustering, since we calculate the distance matrix between each element. One
of the advantages of the density-based methods is the lack of the parameter k. The
number of clusters is one of the returned values of this method. On the other hand,
the number of clusters depends on a parameter € that defines the neighborhood of
objects.

3.3.1 DBScan

In the method, we go through each element and count the number of neighborhood
elements in a distance area. It is calculated as follows:

Ne @ xild(x;, xj) <€, (3.13)

where x; and x; are two elements of the training data set and € is the neighborhood
distance. The distance is used to find the most similar objects in the feature space.
This is one of the two parameters that we need to set in this method. The second
parameter is the min_points parameter, which is about the number of neighbors
that we expect to have at least not to be considered as the border object of the cluster.
If the object does not have any neighbors, it is considered as noise. The method
consists of the following steps:

1. calculate distance matrix,
2. get the closest element,
3. merge into a cluster if the distance is small enough.

It can also be used to find noise in the data set. The calculation of the distance
matrix can be implemented in the same way as in the hierarchical clustering methods
explained in the previous chapter.

Mark functions

The method goes through each object in the data set and assigns an object to one of
the clusters or to the noise. We also need to have functions to set if we have checked
an object or it still needs to be assigned. These types of methods for setting the status
and checking the status of each object are implemented in the Listing 3.20.

| def set_as_noise (membership , element_id):

nwonon

This method sets an object as noise

:param membership: membership matrix
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:param element_id: measured object id
:return: membership matrix

W

membership[element_id] = -1

return membership

def set_visited (elements , membership , number _of_clusters)

W
This method sets an object as already checked/
assigned

:param elements: objects that we want to set as
already checked

:param membership: membership matrix

:param number_of_clusters: the number of cluster to
be set as checked in the membership matrix

:return: membership matrix

for element_id in elements . keys () :
membership[element_id] = number_of_clusters
return membership

Listing 3.20 Elements manipulation methods

The function elements_in_area returns the objects that are within the neighbor-
hood, which means that the distance between the object and other objects is less than
€. The function filter_visited returns the distance vector where all objects
that have been assigned are removed from the vector. Two functions that manipulate
the status of an object: set_visited that sets the cluster number to the object,
and set_as_noise that assigns the value —1 to the objects. The value —1 in this
method means noise.

Closest objects

The closest objects are grouped into one cluster. We take one object randomly from
the data set and find the objects where the distance is less than € (see the Listing
3.21).

def get_closest_elements(distance_matrix N element_id) :

W
This method calculates the closets objects to the one
given as parameter

:param distance_matrix: distance matrix

:param element_id: measured object id

:return: membership matrix

W

element_distances = distance_matrix [element_id]
filtered = {}

iter = 0

for element in element_distances:
if element < max_distance :
filtered[iter] = element
iter = iter + 1
return filtered

Listing 3.21 Smallest distance elements function
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The method is simple and uses the distance matrix and the element_id that is
the object we are currently investigating. The function returns a vector of the closest
objects.

Build clusters

The main part of the method is given in the Listing 3.22. We iterate randomly through
the data set and check if the current objects are already marked with the cluster number
or noise. If not, we find the closest objects to it.

def cluster_density (membership):

nwonon

This dis the main density clustering method

:param membership: global membership matrix
:return: membership matrix

W

number_of_cluster = 0

distance_matrix = calculate_distance_matrix ()
element_ids = 1list (range (len(data_set)))
random . shuffle (element_ids)

for i in element_ids:

if membership [i] 1= 0:
continue
closest = get_closest_elements(distance_matrix, i

if len(closest) < min_points:

membership = set_as_noise (membership ,i)
else:
membership = set_visited (closest , membership ,
number _of_cluster)
number_of_cluster = number_of_cluster + 1

return membership

Listing 3.22 Main clustering method

In the second loop, we go through the closest objects and check if the distance of
the objects is less than €. In case it is less than € we set such an object with the
set_visited function with the current cluster number. The number of clusters
increases in each loop. In Fig.3.5 we have two clusters marked with triangles and
squares. The noise is the object without any other object in the neighborhood and is
marked with a red x. The green triangle is the only border object, because there are
fewer objects in the neighborhood than min_points.

Example 5 (Aircrafts density clustered) In this example, for comparison reasons of
the quality metrics explained in the next section, we use the same data set as in the
previous examples in the clustering part of this book.

In the first step, we calculate the distance matrix that is the same in the Example
4. Next, we choose one randomly chosen element and get the lowest distances. Let
the chosen object be x3. We get the following distance vector:

dy, = [0.14 0.16 0.23 0.0 0.04 0.14 1.14 1.21 0.99 0.39] .
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Fig. 3.5 DBScan explained
with € = 0.2 and minimal
points set to 2. Two clusters u
marked with blue triangles x u

and squares. The green
triangle is the border point.
Outlier is marked with = u
orange square

X2

X1

We include all objects where the distance is below the max_distance into a
cluster. If the max_distance (¢€) is 0.25 then we have four other objects within
this cluster: xq, x1, X2, X4, X5, Xg. We mark all as the first cluster. In the next step, we
could randomly choose x9. There are no other objects that are close enough:

dy, = [0.49 0.45 0.415 0.394 0.354 0.357 0.746 0.821 0.632 0] .
This object is marked as noise. In the next loop, we choose x7:
dy, = [1.303 1.254 1.191 1.215 1.175 1.162 0.086 0 0.431 0.821].

We take an object as border object if it is below min_points. This cluster consists
of two border objects, because there is only one neighborhood object for x¢ and x.
The remaining object xg is marked as noise because the distance from other objects
is greater than € as in the case of x9. The final result looks as given in Fig.3.6. We
have two objects marked as noise and two clusters. The first cluster is marked with
blue triangles and consists of five objects. The second one is marked with red squares
and consists of two border objects.

3.3.2 Comparison to Hierarchical and Distributed Clustering

The comparison of all three group methods can be done on a few levels. The advantage
of distributed methods is the simplicity and different variations as a fuzzy and possible
approach. The disadvantage is the k value that must be set before the clustering is
carried out and limit the number of clusters to k. In hierarchical methods, we can
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Fig. 3.6 DBScan used on s
Aircraft data set with =
€ =0.25and min_points
set to 2
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choose the number of clusters that are in our interest. We can choose from many
small clusters or choose two clusters. The hierarchical methods are parameterless.
The density methods depend on two parameters, where € if greater, there is less cluster
we get. A lower value of € generates a greater number of clusters. The disadvantage
is that it might be hard to predict how many clusters we get, and we still need to set
two parameters.

3.4 Quality and Validation Methods in Unsupervised
Learning

Finding the best clustering method is not an easy task. To make this task easier, we can
use multiple validation methods. The most important factors are the homogeneity and
heterogeneity of a clustering method. Homogeneity means that each element within a
cluster should be similar to each other. The more each element is similar to each other,
the better method. An example of a similarity measure can be a distance method such
as the Euclidean distance. Heterogeneity is about the difference between each cluster.
Elements of each cluster should be varied compared to elements of the other clusters.
The question here is what the value of similarity means that the method is good? We
can compare the similarities between each method and distinguish which method
gives the best results. Another possibility is to use one of the commonly known
validation methods. In this section, we explain the group of validation methods in
this section. Before we come to this point, we answer another tricky question: how
many clusters should we have? In previous examples, we could decide on the basis
of a plot of elements of a given problem. Real-world clustering problems can be a
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bit more complex, and it can be difficult to choose the best number of clusters. In the
next section, we give some advice on how to choose the right number of clusters.

3.4.1 Heterogeneity and Homogeneity

Some of the quality metrics are known as separation and dispersion measures. Such
metrics tell us, for example, how far objects are from the center of a cluster. This
measure should be the smallest possible to consider the clustering method to be good.
The ideal case would be to have the objects very close, or even at the same point
as the center. In real-world examples, it is hard for all objects to be so close to the
center of a cluster. The two homogeneity metrics that we explain here are marked as
o1 and o0,. Both are related to the differences within each cluster. The differences are
known as dispersion measures within a cluster. As we do some calculations within
the cluster, we need to refer to the cluster center. The equation of the average object
dispersion is as follows:

1
oie) =— 3 d*n,x), (3.14)

X1,X2€C;

where the m is defined as
(n; — Dn;
m= — (3.15)

The n; is the count of objects within the i-th cluster. If we have two clusters, we
calculate two dispersion measures o1, one for each cluster. The value of this measure
is the sum of the Euclidean distances squared between each object within the cluster
divided by m. It can be easily implemented in Python as shown in Listing 3.23.

def calculate_sigma_1 (membership):

woon

This method calculates sigmal quality metric

:param membership: membership matrix
:return: sigmal values

sigma_1 = []

unique_labels = len(membership [0])

for label_id in range (unique_labels):
ids = np.where (membership[:, label_id] == 1) [0]
if len (ids) == 1:
sigma_1.append (1.0)
continue

else:

m = (len(ids) — 1.0) % len(ids) / 2.0
elements = data_set [ids]
sigma = (1.0 / m)

for element_x_1 in range (len(elements)):
for element_x_2 in range (len(elements)):
if element_x_1 == element_x_2:
continue
distance = calculate_distance (elements
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elements [element_x_21)
0:

[element_x_117,
igma + (distance %% 2)

if distance !

sigma = s

sigma_1.append (sigma)
return sigma_1

Listing 3.23 o index calculation method

The method calculate_sigma_1 wuses some private variables like
__assignationand __points. The first variable is the result of the clustering
method and is a matrix of size k x m, where m is the number of objects and k is
the number of clusters. In the case of k-means, we have the matrix filled with values
from the set of 0, 1. We have three for loops as we calculate the distance between
two points for each center (unique_labels). We use the same distance measure
as described in Chap. 2. The second dispersion measure is marked as o,. Here, we
calculate the distance power between each object x within a cluster and the center
of the cluster ¢;. We divide the result by the count of objects within the cluster. The
equation is as follows:

ox(ci) = %Zdz(x,ci). (3.16)

! XEC;
It looks a bit simpler compared to o;. In both cases, the smallest value demonstrates
a better clustering result. The metric can be implemented as shown in Listing 3.24.

def calculate_sigma_2 (centers , membership):

nwonon

This method calculates sigma2 quality metric

:param centers: clusters centroids
:param membership: membership matrix
:return: sigma2 values
W
sigma_2 = []
for center_id in range (len (centers)):
ids = np.where (membership[:, center_id] == 1) [0]
elements = data_set [ids]
sigma = 1.0 / len (ids)
for element_id in range(len(elements)):
distance = calculate_distance (elements
[element_id], centers[center_id])
if distance !'= 0:
sigma = sigma + (distance) %% 2

sigma_2 .append (sigma)
return sigma_2

Listing 3.24 o, index calculation method

In this case we iterate only through two loops: the centroids and elements within
centroid’s cluster. The distance measure is exactly the same as in the previous metrics.
We can also use different distance metric, but we use the Euclidean distance as the
most common one. Measures similar to o) and o, are the total dispersion measures.
These metrics provide a better understanding of the recurrence of objects within a
cluster and feature space. Both metrics are just sums of dispersion measures o and
0,. We mark it with (o) and r(03) and calculate it as follows:



94 3 Unsupervised Learning

K

rio) =Y oi(c), (3.17)
i=1
K

r(oa) =Y o). (3.18)

i=1

Small values of r(o7) and r (02) mean a high recurrence of objects within the feature
space. Higher values mean exactly the opposite.

We have four separation measures s;(c;, ¢;), $2(¢;, ¢;), s(s1), and s(s2). The first
two separation measures explain how far apart the clusters are from each other. We
measure it for each pair of centroids. The metric s; can be calculated as follows:

> dx.x). (3.19)

X1,€Ci,X2€C;

si(ci, cj) =
nin;

We take two objects, each from different clusters, and calculate the power distance
measure. Next, we sum all the distances from the object of two clusters and calculate
the square root of it. The value is then divided by the multiplication of the counts of
objects in both clusters. As shown in the Listing 3.25 we have this time three loops.
In two we get objects of centroids, and in the other two, we get the distance between
those objects.

def calculate_s_1(centers , membership):

This method calculates sl1 quality metric

:param centers: clusters centroids
:param membership: membership matrix
:return: sl1 values

won

s1 = []

for center_1 in range (len (centers)):
for center_2 in range (len(centers)):

if center_1 == center_2:
break

ids_1 = np.where (membership[:, center_1] ==
1) [o]

ids_2 = np.where (membership[:, center_2] ==
1) [0]

elements_1 = data_set [ids_11]

elements_2 = data_set [ids_2]

s_1 = 1.0 / (len(ids_1) % len(ids_2))

for element_1 in elements_1:
for element_2 in elements_2:
s_1 = s_1 % sqrt(calculate_distance
(element_1 , element_2) #*x 2)
s1.append (s_1)
return si

Listing 3.25 s; index calculation method

The second separation measure is about the distance between two centroids:

SQ(Ci,Cj) Zd(Ci,Cj). (320)
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It is the simplest measure to date, since it uses only the distance between two centers.
The third separation measure uses the dispersion measure o;. It is a simple sum of a
division of s; for two centroids and o; for centroid ¢;:

K

s= Y. s ¢j). 3.21)

e 1)

This measure takes into account the entire feature space. The sums can be easily
calculated if we already have s; and o as shown in the Listing 3.26.

def calculate_s_s_1(s1, sigma_1):

wonon

This method calculates s(sl1) quality metric

:param sl1: sl1 metric values
:param sigma_1: sigmal metric values
:return: s(s1) values
W
s_1_sum = 0.0
sigma_1_sum = 0.0
for s_1 in s1:
s_1_sum = s_1_sum + s_1
for sigma_1 in sigma_1:
sigma_1_sum = sigma_1_sum + sigma_1
s_s1 = s_1_sum / sigma_1_sum

return s_si

Listing 3.26 s(s;) index calculation method

The last measure is also simple. It is a sum of measures s;:

K
s(sn) = Z sa2(ci, ¢j) (3.22)

ij=1j#

We do not need to calculate all the measures to know if our clustering method
is performing well. In most cases, we can use just a few or one. Especially r(03) is
used very often. There are also some other metrics that are called indices and are
explained later. Both are the most popular ones.

Example 6 (Aircrafts clustering methods quality) In this example we explain the
measures described above based on the Example 1 shown in the k-means section.
The heterogeneity and homogeneity measures cannot be used for all clustering meth-
ods. Some methods need cluster centroids, and only distributed methods provide
centroids. Technically, it is possible to calculate the centroids based on an already
clustered data set using different methods, but in this section we stick to the k-means
examples. Let us assume that we also have done a k-means clustering with £k = 3
and have the results of the membership matrix as

000000001
U=|111110000{,
0oooo01110
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and the centroids as
0.422 0.385

V =10.078 0.178
0.829 0.970

The dispersion measure o} for the k-mean method with k = 2 would be

7—1) %7
my= T = D*T oy
2
3-1
my = 37D
2

1
O_lhcmZ(cl) =55 %2.728 = 0.1299,

1
o™ (cy) = 3 %0:63529 = 0.2118.

The results are given for each cluster. That is why we have only two values in the
first cases, and three in the case of three clusters:

_ (6—1)*6_

ny B ]5,
3—1
my= O DE3 o
2
1—1)%2
my= L= D*2_
2

1
o‘hcm3(C1) = — x0.6830 = 00455a
1 15

1
o™ (cy) = 3% 0.63529 = 0.2118,

alhcm3 (c3) =0.

The lower value means a better cluster, but the last cluster of the Xk = 3 k-means
method is equal to 0. We have only one object in this cluster and it shouldn’t be
compared to other clusters. The second conclusion is that when one of the objects
was removed from the first cluster in the kK = 3 clustering, the dispersion measure
decreased about three times compared to the first group in the kK = 2 group. This
cluster should also be considered the best based on the dispersion measure o;. The
second measure of dispersion takes the distance between the objects and the centroid
of a cluster:
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hem?2 1
0, " (c1) = 7 *0.1948 = 0.0278,

1
oM (cy) = 3 % 010588 = 0.03529.

Again, in the first cluster the objects are closer to the centroid compared to other
clusters. We get similar results for k = 3:

1
o2 (1) = = +0.0569 = 0.0278,

1
oM (cy) = 3% 0.10588 = 0.03529,

a;°m3 (c3) =0.

The separation measure s; gives a better understanding of how the clusters are related
to each other. In other words, how are good clusters different from other clusters.
We calculate this measure for k = 2 and k = 3 as the previous metrics. For k = 2
we compare just the two clusters:

1
T%3

*4/23.8735 = 0.2327.

S?sz(cl ,02) =

We can compare the result only with other clusters that we get using k-means with
k=3:

1

s?cmS(C‘[, CZ) = 6 " l B3 1022 = 016857
1 e

s?cm3 (CZ’ C3) = 3 <1 * 1630 = 042566’
1

*4/22.2428 = 0.262.

hem3
57 (e, 03) =

6%3

The second and third clusters in k-means with k = 3 clustering are different when
we compare both.

3.4.2 Number of Clusters

The number of clusters can be chosen using the elbow method [10]. The goal of this
method is to choose many values of k£ and calculate the error rate using one of the
methods explained in the previous section or the internal indices explained in the
next section. Based on the result of each execution, we can plot a graph that looks as
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shown in Fig. 3.7. At some point in this graph, increasing the number & gives a lower
error rate. The error rate is next at a similar level for the next values of k. This means
that the best k in Fig. 3.7 would be 6, because for the next values of k the error rate
is similar or the changes are very low. Choosing the appropriate value of k can be
done automatically. One of such an approach is presented in X-means [11]. A good
practice is also to obtain 7 (o0,) as the error rate on the y axis. It behaves similarly to
the graph as shown in Fig.3.7.

3.4.3 Internal and External Indices

Internal and external indices are another type of measure. The difference between
the internal and external indices depends on the information used to calculate the
index. The internal indices are based only on the training data set. External indices
use the labels and testing data set [12—-19]. We can use the typical quality metrics
known from supervised learning. Usually, we do not have the labels available for
verification of the clustering method. This is why in this section we focus on internal
indices. One of the most popular is called the Dunn index [20]. The Dunn index can
be easily calculated as a quotient of two distances:

do
c=- (3.23)
dmax
where the equations of diax and dp,;, are as follows:
dmax = max Dy, (3.24)
1<k<K
dipin = min dy. (3.25)
k#k'
Fig. 3.7 Choosing the
proper k number of clusters
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Both distances are just the minimum and maximum Euclidean distances between
objects. The minimum distance is a measure of two objects that are in different

clusters: /
de= min_ d(x" —x{) (3.26)

ijelgizi
The clusters are marked with k and k’. The maximum distance takes the distance of
two objects within the cluster:

Dy = max d(x® —x") (3.27)
ijeli#] !

Dy and d,, values are calculated for each cluster k, but in the Dunn index, we take

only the highest value of D, and the lowest value of d;. It can be calculated in Python

as shown in Listing 3.27.

def dunn_index (membership):

wonon

This method calculates dunn index quality metric

:param membership: membership matrix
:return: dunn index values
minimum_distance = 1
maximum_distance = 0
unique_labels = np.unique (membership [0])
# Q@TODO
for label_id_1 in range (len(unique_labels)):
ids_1 = np.vwhere (membership[:, label_id_1]1 == 1)

[o0]
for label_id_2 in range (len(unique_labels)):
if label_id_1 == 1label_id_2:
break
ids_2 = np.where (membership[:, label_id_2]1 ==
1) [0]
for element_1 in data_set [ids_117]:
for element_2 in data_set [ids_21]:
distance = calculate_distance
(element_1 , element_2)
if distance > maximum_distance :
maximum_distance = distance
if distance < minimum_distance:
minimum_distance = distance
dunn_index = minimum_distance / maximum_distance
return dunn_index

Listing 3.27 Dunn index calculation method

In the Listing 3.27 we loop over the clusters and calculate the minimum (minimum_
distance) and maximum (maximum_distance) distances. Both are used to
calculate the C. In this case, higher values mean better clustering results. Compared
to the heterogeneity measures, we take all clusters into account and get the results of
the whole method instead of comparing each cluster with each other. It means that
there is one value for the clustering method independent of the k value.

Example 7 (Dunn index of aircraft data set clustering) We calculate the minimum
and maximum distance values between the objects within the cluster and obtain the
maximum value, in general dp,x. Same for the minimum. For the k-mean aircraft
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data set and k = 2 we get

0.63237
chem2 — = — ().48534,
1.30295
354
chem3 — 0.35409 0.72248.

T 0.49011

The values are taken from the distance matrix. As expected, the second case is almost
50% better than the previous clustering. At some point, as the value of k increases,
the value of C will increase slower, and that is a good metric to determine the best
value of k. This applies also to other clustering methods as distributed clustering
methods.

3.5 Image Segmentation

Clustering is usually used in image segmentation. In the current example, we use
the logo of Jagiellonian University in Krakow (see Fig. 3.8a) to segment it into three
groups. To fulfill this task, we use the k-means clustering method. The image is 232
pixels in width and 258 pixels in height. The segmentation process is divided into
the following steps:

convert image into a numpy matrix,

select the k value,

generate group centers in three-dimensional RGB space,
use k-means to segment the numpy matrix,

save the result as output image.

SR

The only difference compared to the k-means algorithm is the part dedicated to image
processing.

3.5.1 Preprocessing

In the Listing 3.28 there is an example of an image conversion class is presented.
We need to convert an image into a matrix that can be used for a calculation in
Python. Each pixel is represented by three values of the RGB model. The image can
be represented as a three-dimensional matrix or as three two-dimensional matrices.
There are 2553 different colors available, and we have a space of 232 % 258 to analyze.
This means that a lot of pixels need to be analyzed. To reduce the calculation, we can
get the colors that are available on the image as some colors are repeated very often
on the image. This dramatically reduces the number of calculations needed. In our
example, depending on the precision, we have 59,856 or 256 unique colors. To get
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256 unique colors, we need to limit the precision to two decimals. To obtain unique
colors, we can implement a method as shown in the Listing 3.28.

I class ImageConversion:

3 def get_image_from_url (self , img_url):

4 W

5 This method loads the image and returns it.

6

7 :param img_url: image path

8 :return: returns the image as a Pillow image

9 nun

10 image = open (img_url ,’rb’)

1 return img.imread (image)

12

13 def get_unique_colors (self , image_matrix):

14 no

15 This method gets the unique colors in the image
and returmns 1is as a matrix.

16

17 :param image_matrix: image pixels

18 :return: returns the unique colors and all pixels

19 non

20

21 pixel_matrix = []

2 for i in range (len(image_matrix)):

23 pixel_matrix = pixel_matrix + image_matrix

24 [i]. tolist ()

25 pixel_matrix_np = np.array (pixel_matrix)

26 uniques , index = np.unique ([str (i) for i in
pixel_matrix_np], return_index=True)

27 return pixel_matrix_np[index], pixel_matrix

28

29 def save_image (self , image_shape , pixel_matrix ,
unique_matrix , membership_matrix , colors , output_path
)

30 o

31 This method gets the image size and pixels ,
assign each pixel to one of each

32 cluster and save the segmented image

34 :param image_shape: the output image shape

35 :param pixel_matrix: image pixels

36 :param unique_matrix: unique <colors matrix

37 :param membership_matrix: the memberships matrix
of each unique <color

38 :param colors: the cluster colors

39 :param output_path: image path to be saved

40 :return: None

41 no

42 image_out = Image.new ("RGB", image_shape)

13 colors = (np.array (colors) =x 255) .astype (int).
tolist ()

44 color_membership_id = 0

45 for unique in unique_matrix.tolist ():

46 indices = np.where ((pixel_matrix [:,0] ==
unique [0]) & (pixel_matrix[:, 1] == unique [1]) &

47 (pixel_matrix [:,2] == unique [2]))

48 pixel _matrix [indices [0]. tolist ()] = tuple

49 (colors[np.array (membership_matrix [
color_membership_id]).argmax () 1)

50 print (np.array (membership_matrix [
color_membership_id]) .argmax ())

51 color_membership_id = color_membership_id + 1

52 pixel_matrix = pixel_matrix.astype (int)



102 3 Unsupervised Learning
pixels = [tuple(x) for x in pixel_matrix.tolist ()

image_out .putdata (pixels)
image_out .save (output_path)

Listing 3.28 Image convertion class

The ImageConversion class consists of three methods. The first method
get_image_from_url reads the image and returns the handle to the object in
the image. The second get_unique_colours loops over the image matrix and
obtains the unique pixel colors. The last method saves the image based on the pixel
matrix and unique colors. It uses the group color assigned to the unique color to draw
the final image. The result is an image consisting of k colors. In our example, we
have only three colors that are the centroids.

3.5.2 Selecting the Number of Clusters

The next step can be implemented as a method shown in the Listing 3.29. We can

easily judge, based on the image shown in Fig. 3.8a, that the valid value of k is 3.
def calculate_distance (self , x, v):

This method calculates the Euclidean distance
between object x and v.

:param x: first object
:param v: second object
:return: Euclidean distance

noon

return math.sqrt ((x[0] —-v [0]) **%x2+(x[1] —v [1]) *%x2+
(x[2] —v [2]) *%2)

Listing 3.29 Euclidean distance for more than two points

We select three groups centers in three-dimensional space. The goal here is to find
three colors that are the centers of each group.

3.5.3 Distributed Clustering-Based Segmentation

We calculate the membership vector of each pixel by analyzing only the colors in the
image. The final code that combines all the steps can be found in the Listing 3.30.
The class Segmentation is a modified version of the implementation of k-means
from Sect. 3.1. The modifications are adjustments to work with three clusters.

image_to_segment = "<path>"

image_converter = ImageConversion ()

image_data = image_converter .get_image_from_url
(image_to_segment)

unique_image_data , image_data_list = image_converter .

get_unique_colors (image_data)
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groups = 3

if image_data.shape [2] > 3:
image_data = image_data [:,: ,[0,1,2]]
unique_image_data = unique_image_datal[:,[0,1,2]]
image_data_list = np.array (image_data_list)

[:,00,1,2]]

segmentation = Segmentation(unique_image_data , groups)

segmentation.do_segmentation ()

centers , membership_matrix = segmentation.get_results ()

image_size = (232, 258)

image_converter . save_image(image_size 5 image_data_list ,
unique_image_data , membership_matrix , centers , "<path
>|I)

fig = pyplot.figure ()

ax = Axes3D (fig)

#ax.set_aspect (" equal")

x_centers = [item [0] for ditem in centers]

y_centers = [item [1] for ditem in centers]

z_centers = [item [2] for item in centers]

x_values = [item [0] for item in unique_image_data]l

y_values = [item [1] for ditem in unique_image_data]l

z_values = [item [2] for item in unique_image_data]

ax .scatter (x_values , y_values , z_values , c=np.array

(unique_image_data) ,alpha=0.5)

ax.scatter (x_centers , y_-centers , z_centers , c=’black’,
marker=’s’,alpha=1)

ax.set_xlabel (’R’)
ax .set_ylabel (’G’)
ax.set_zlabel (’B’)
pyplot .show ()

Listing 3.30 Example main script

In lines 13—14 we set the image size and save the segmented image. The input and
output images are shown in Fig. 3.8. The output presents the assignment of each pixel
to one of the following groups:

logo background

. [image background)

We can use segmentation for all images. In this example, we used the RGB model,
but it can also be used with other color models.

3.5.4 Centroids in RGB Model

In the examples in Sect. 3.1 we used a data set with two features. This means that we
had a two-dimensional feature space. In the image segmentation example, we used
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(a) Image used for segmentation (b) Image segmented into three groups
of pixels

Fig. 3.8 Image segmentation done using HCM method. One left of the original image is shown.
On the right is the segmented image. Source https://www.uj.edu.pl/

Fig. 3.9 Segmentation pixel
unique colors set in a
three-dimensional RGB
feature space. Pixels are
marked with a unique color.
Centroids are marked with
black squares

200

three features. We can draw the centroids and pixel colors in a three-dimensional
RGB feature space. This plot is given in Fig.3.9. The centroids are marked with
black squares. These are our groups that are visible in Fig. 3.8b. We have limited the
number of unique colors in Fig.3.9 to 256.

For Further Reading

1. Patel AA (2019) Hands-on unsupervised learning using Python. O’Reilly
2. Johnston B, Jones A, Kruger C (2019) Applied unsupervised learning with Python.
Packt
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Chapter 4 )
Introduction to Shallow Supervised e

Methods

In this section, we explain a few basic methods. Explaining the simple machine
learning methods done in the first place makes it easier to understand the more
complex ones. All the methods presented in this chapter are supervised methods. We
start with linear classifiers, such as the Fisher classifier. To understand the linearity
of the classifiers, we discuss the k nearest neighborhood method that is not linear by
design and compare it to Fisher’s Linear Discriminant method. The last part of the
linear section is dedicated to two regression methods: linear and logistic regression.

4.1 Fisher’s Classifier

Fisher’s Linear Discriminant is also known as Linear Discriminant Analysis [1]. The
idea of Fisher’s classifier is to move the data into a reduced-dimension feature space
and do the classification there. For example, reducing a two-dimensional feature
space to a one-dimensional feature space makes the classification easier, because
instead of a hyperplane in the higher dimension space, we just need to find a point
on a line in a one-dimensional space. Simplification is not always the right way to
distinguish between classes. We will show the SVM classifier later where the goal
is the total opposite and the goal is to add one or more dimensions. The appropriate
method should be chosen according to the classification problem.

The goal of Fisher’s classifier is to calculate the between-class variance with
the class means (m, m,), and the within-class variance (S,,, S;). The means can be

calculated as follows: 1
= — E . 4.1
m - X 4.1)

b oxei
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The within-class variance can be calculated as follows:

K Ci

Sw =YY Nelry —mi)(xn —mp)”

k=1 n=1

and

K
Sp=> (i —m)(me —m)".

k=1
Finally, the weights can be calculated as follows:
w =Sy (myy —m_y).
The discriminant function can be written as
8(0) =wrx = (myy —m_)" Sy'x,

where:
_ l T T
wo = 2(w mip+w' m_y).

This brings us to the following.

A 0,x €1,
g =wx—wy{ "
<0,x € —1.

4.2)

(4.3)

4.4)

(4.5)

(4.6)

4.7)

Example 1 (Iris dimensionality reduction) The iris data set is a classic one that
consists of four features and a label. There are three labels, but to simplify this
example, we use only two labels. In the Listing 4.1 two the data set is loaded in
lines 3-8. In the lines 10 and 11, the mean values are calculated. It is needed for the
variances that are calculated in the following lines. The last lines are used to plot the

plot with data of reduced dimensionality.

from sklearn.datasets import load_iris

> from sklearn import preprocessing

6
8
9
10

iris_data, iris_labels = load_iris(return_X_y=True)

iris_data = np.array(preprocessing.normalize(iris_data))

x1 = iris_datalnp.where(iris_labels == 1)]1[:,[0,1]]

x2 = iris_datal[np.where(iris_labels == 2)]1[:,[0,1]]

y = iris_labels

mean_x1, mean_x2 = np.mean(xl,axis=0), np.mean(x2,axis=0)
> mean = np.mean(np.append(xl,x2))

Sb np.sum((mean_x1-mean) *(mean_x2-—mean))

Sw
mean_x2))

w = np.dot(np.linalg.inv(Sw), (mean_x2-mean_x1))

np.dot ((x1-mean_x1).T, (xl-mean_x1))+np.dot((x2—mean_x2).T,

(x2—
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Fig. 4.1 Reduce the dimensionality of the iris data set using Fisher classifier

18
19 cov = np.cov(np.concatenate ((x1.T,x2.T)),ddof=0)
20 cov_inv = np.linalg.inv(cov)

21

» plt.plot(np.dot(xl, w), [0]l*xl.shapel[0], "bo")

3 plt.plot(np.dot(x2, w), [0]%x2.shape[0], "go")

Listing 4.1 Calculating the S, and S}, values

In Fig.4.1 the Iris sets are shown. The mapping of a two-dimensional feature
space (a) to a line (b) is given. The example is not complex, and the distinguishing
line can be drawn easily, but the threshold that distinguishes between the blue and
the green objects can be drawn even more easily in a one-dimensional feature space.

4.2 Nearest Neighborhood Classifiers

In one sentence, KNN looks for other objects in the neighborhood and assigns the
most popular label to new objects. The & in the name is the number of objects that we
look for labels in the neighborhood. Depending on the number of labels, we should
set the proper value of k. For two labels, k should be an odd value like 3 or 5 to make
a decision easier. A general discriminant function is set as

gl(y)zkl’ i=11""L9 (4'8)

where L is the number of classes and k; is the number of objects of label i in the
neighborhood. The sum of k; is equal to k, the number of neighborhood objects.
We choose the label where we have the highest number of labels k;. The classifier
algorithm consists of three simple steps:

e calculate the distance vector between the new object and all objects in our data
set,



110 4 Introduction to Shallow Supervised Methods

1 1
[m} O
0.5 A 0.5 £
. ) .
0 A 0
[m} [m}
-0.5 O -0.5 |
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(a) INN (b) 3NN

Fig. 4.2 Two example of the same data set for different k

e find the closest k objects with the lowest distance from our new object,
e assign label to the new object using Eq.4.8.

In Fig. 4.2 two example data sets are given with KNN used with k = 1 (left) and k = 3
(right). We see that if we set the k = 1 for the green circle (new object), we assign it
to the square group. If we extend the neighborhood to k = 3, we will assign the new
object to the triangle group. The value k should be set empirically, depending on the
data set.

The distance vector can be calculated in a similar way as it was explained in the
previous part on clustering methods. The closest object can also be chosen similarly
to the method implemented in the clustering sections or as in the Listing 4.2.

def calculate_distance(x, v):

This method calculates the Euclidean distance between object x and v.

:param x: first object
:param v: second object
:return: Euclidean distance

nun

return sqrt ((x[0] — v[0]) % 2 + (x[1] — vI[1]) x*x 2)

def calculate_distance_matrix():

nun

This method calculates the distance matrix between all objects.

:return: A matrix of distances
wan
distance_matrix = np.zeros((len(data_set),len(data_set)))
for i in range(len(data_set)):

for j in range(len(data_set)):

distance_matrix[i, j] = calculate_distance(data_set[i],

data_set [j])
return distance_matrix

23 def find_closest_objects(x, k):

nun

Finds k closts objects to x.
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:return: A list of objects’ ids.
wan

distances = []

i=20

for item in train_set.values:
distances.append ([i, calculate_distance(x, item)])
i=1i4+1

distances=np.array(distances)

label_ids = distances[distances[:, 1].argsort()]1[:k,0]

return [int(item) for item in label_ids]

Listing 4.2 Method that returns the closest objects

The main difference between this method and the ones used for clustering is that
in the case of kNN, we return a vector of k with the lowest distance instead of
just the closest one. It uses the same methods like calculate_distance and
calculate_distance_matrix that work the same as for the clustering meth-
ods mentioned in the previous chapter. Similarly, find closest_objects
method looks for the closest object to the one that we get as an argument. The
difference is the k as we do not look for just the closest by for the k closest objects.

def predict():

nun

Assign a label of the most common label in the list of closest objects

:return: A list of predictions.

nun

predictions = []

for item in test_set.values:
label_ids = find_closest_objects(item, k)
counts = np.bincount(train_set_labels.values[label_ids])
label = np.argmax(counts)

predictions.append(label)
return predictions

Listing 4.3 kNN prediction method

The prediction can be implemented as in Listing 4.3. It just calculates the accuracy—
the percentage number of properly classified labels divided by the number of all
objects. Instead of typical accuracy as it is implemented in the scikit-learn package,
this one counts the number of occurrences of labels and returns the one with the
maximum occurrences. For binary cases, the k values are usually odd.

Example 2 (Titanic survival kNN classification) The Titanic data set is another
classic data set that was originally available on Kaggle. It is also available using
the Tensorflow library as one of the test data sets. To use it we import the
tensorflow_datasests and load it as shown in Listing 4.4 lines 7 and 8.

import numpy as np

import tensorflow_datasets as tfds

import pandas as pd

from math import sqrt

from sklearn.metrics import accuracy_score

ds = tfds.load(’titanic’, split=’train’, shuffle_files=True)
titanic_df = tfds.as_dataframe(ds)

titanic_df.drop("name", axis=1, inplace=True)
columns = [’survived’,’age’,’fare’]
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Fig. 4.3 kNN Titanic prediction results

features = ¢

3 titanic_df =

O
titanic_df =
survivded_df

not_survivde

age

(a) Train data set

olumns [1:]

titanic_df [columns].replace([np.inf, —np.inf],

(b) Predicted objects: orange - properly
classified as not survived, blue - prop-
erly classified as survived, black classi-
fied not properly as not survived, purple
- not properly classified as survived

np.nan) .dropna

titanic_df [titanic_df[’fare’] > 30]

= titanic_df[titanic_df[’survived’]==1].sample (50,
random_state=12345)

d_df =

random_state=12345)

train_set =
train_set =

survivded_df .sample (40,
pd.concat ([train_set,

=12345)1)

train_set_la

3 train_set =

test_set = survivded_df.sample (10,
test_set = pd.concat([test_set,
=12345)1)

test_set_lab
test_set =

bels =

els =

titanic_df [titanic_df[’survived’]==0].sample (50,

random_state=12345)

not_survivded_df .sample (40, random_state

train_set[’survived’]
train_set[features]

random_state=12345)

not_survivded_df.sample(lo, random_state

test_set[’survived’]
test_set [features]

Listing 4.4 kNN data set and parameters setup

The next lines are the data cleanup operations that get three columns (age, fare,
survived) and limit the number of examples. We use again a small number of examples
to train the model faster, but also in this case plot the examples in such a way that
these are easier to read. The surviving column is our binary label and the two other
columns are our features. These two features might now be obvious to have an impact
on the prediction as gender has. The results are shown in Fig.4.3. In the first one
the training set is shown with two labels: survived (green), drown (red). In Fig.4.3b
the testing set objects are plotted. The orange dots are the objects that are properly
classified as drowned, the blue ones are properly classified as survived. On the other
hand, the black and purple ones are misclassified as not drowning and as survived.
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4.3 Linear Regression

Regression is about predicting the future values of a feature that depends on a second
feature. The first feature is called an explanatory variable, and the second that depends
on it is called a response variable. To simplify, let x be an explanatory variable and
v aresponse variable. It can be calculated as follows:

y=ax;+b, (4.9)
where \ _ _
°= Zi:l(fi - X)()j 2—)’) (4.10)
Do (i = %)
and
b=7y—ax. 4.11)

The variable a is known as a slope and is calculated using the ordinary least squares
method, which is similar to the correlation that we have already presented. The
variable b is known as a random variable that adds noise. We can extend the linear
regression equation to more than one variable x;, but to make it simple, we stay with
only one here. Keep in mind that we should consider y as one of our features from the
vector of features. The same as y which corresponds to X;, in our previous example.
It is just the nomenclature. Based on Eq. 4.9 we see that the predicted value depends
on the mean. In 1973 Anscombe [2] found that we can have multiple data sets that
can give the same results of linear regression. Let us take a look at the data sets shown
in Table 4.1. The means for both features are the same and are, respectively, x = 9
andy = 7.5. The regression equation will look for each data set the same and looks
as follows:

A—3+1
y= 5 %i-

The data sets are plotted in Fig.4.4.

Example 3 (Learning II) Let us take the same data set as in the Example in the
Statistics section in Chap. 2 (Table 4.2). We can calculate the number of hours
needed to collect 100 points on the final exam. First, calculate the variables a and b.
The averages are x = 68.5 and y = 32. We can easily calculate a and b:

1504
a =
2265.5

~ (0.6638,

b =32 —-0.6638 - 68.5 ~ —13.4703.
It brings us to a general equation for this problem that looks as follows:

$ = 0.6638x; — 13.4703.
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Table 4.1 Anscombe’s data sets

1 I 1 v
X1 Y1 X2 Y2 X3 V3 X4 V4
10.00 8.04 10.00 9.14 10.00 7.46 8.00 6.58
8.00 6.95 8.00 8.14 8.00 6.77 8.00 5.76
13.00 7.58 13.00 8.74 13.00 12.74 8.00 7.71
9.00 8.81 9.00 8.77 9.00 7.11 8.00 8.84
11.00 8.33 11.00 9.26 11.00 7.81 8.00 8.47
14.00 9.96 14.00 8.10 14.00 8.84 8.00 7.04
6.00 7.24 6.00 6.13 6.00 6.08 8.00 5.25
4.00 4.26 4.00 3.10 4.00 5.39 19.00 12.50
12.00 10.84 12.00 9.13 12.00 8.15 8.00 5.56
7.00 4.82 7.00 7.26 7.00 6.42 8.00 791
5.00 5.68 5.00 4.74 5.00 5.73 8.00 6.89

Fig. 4.4 Linear regression charts for Anscombe’s data sets
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Table 4.2 Correlation between hours spent on learning and exam grade exemplary data
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Fig. 4.5 Linear regression calculation step by step

200

Now we can calculate how many hours we theoretically need to learn to collect 100

points:

Y100 = 0.6638 - 100 — 13.4703 = 52.9.

Linear regression works with more than two features (Fig.4.5), which means that it
generates hyperplanes like shown in Fig.4.6 in a three-dimensional features space.
The weights can be implemented using the numpy methods as in Listing 4.6.

w = np.dot(np.linalg.inv(np.dot(np.transpose(x),x)),np.dot(np.transpose(x)

,¥))

Listing 4.5 Linear regression weights calculation
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Fig. 4.6 Linear regression
hyperplane in a
three-dimensional features
space

The y value can be next calculated as given in Eq. 4.9

def reg_predict (inputs, w, b):
results = []
for inp in inputs:
results.append (inp*w+b)
return results

Listing 4.6 Linear regression weights calculation

Lasso regression

A complex model can end with overfitting. It highly depends on variance and bias
(see Fig.4.7). The variance is related to the differentiation of the training data. The
more features and data we have there higher variance we get. The bias is about
simplification of the model by having a focus on just a part of the features when
the bias is high. It is very hard to have a low variance and low bias model, but we
should keep trying to get as close as possible. In Fig. 4.8 we show the differences in
each combination of low/high variance and bias. There are some methods that can
reduce the model complexity by reducing the variance and bias. In linear regression,
we have a few modifications that

e Lasso regression,
e Ridge regression,
e Elastic Net regression.

Lasso stands for least absolute shrinkage and selection operator. It uses the L1 reg-
ularizer. We take magnitudes into account:
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M P

2
V4
Doy =D wiky | +2D " Iwl (4.12)
=0 j=0

i=1 J

For A = 0, the formula is linear regression. This regularization can make some of
the features not be taken into account in the final output. This means that we can use
Lasso to select the features. The value A:

e higher value means less features,
e lower values mean more features selected.

The way of calculating the linear regression as shown in the previous section is simple
but in many cases is not efficient. A different way and one of the most popular
methods to find the proper weights are the mean squared error and the stochastic
gradient descent, where the first is formulated as

1 ¢ .
MSE = — > G- (4.13)

i=1

MSE or a modification of it can be used to implement stochastic gradient descent
(SGD). A cost function in linear regression is defined as follows:

2

Sl =D wiky | - (4.14)

This function should be minimized using the MSE and SGD methods.

Example 4 (Height found with Lasso regression with SGD) To show how the SGD
works, we use one of the BMI examples of people’s weights and heights shown in
Table 4.3. The lasso regression needs the alpha variable to calculate the slope. The
SGD function takes the initial coefficient matrix, the data set, labels, the number of
epochs, the learning rate, and the L1 alpha (Listing 4.7).

x = np.asmatrix(np.c_[np.ones((len(x),1)),x])

I = np.identity(2)
alpha = 0.1

v init_c = np.zeros((2,1))

results = []

w2 = sgd(init_c, x, y, 10, 0.1, alpha)
w2 = w2.ravel ()
results.append (w2)

= np.linalg.inv(x.T % x + alpha % I) % x.T % y
wl = wil.ravel()
= np.squeeze(np.asarray(wl))

Listing 4.7 Linear regression weights calculation using SGD
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Table 4.3 BMI data set example
Height 188 [ 181 | 197 | 168 | 167 | 187 | 178 | 194 | 140 | 176 | 168 | 192 | 173 | 142 | 176
Weight | 141106 | 149 | 59| 79 | 136 | 65 |136| 52| 87 |115|140 | 82| 69 | 121

The method calculates the weights and bias using Eq. 4.14.

def sgd(coeffs, x, y, epochs, rate = 0.1, 11 = 0.1):
norm = np.linalg.norm(x, axis = 0)
coeffs [0]
coeffs[1
y .shape [0]
x.shape [1]
for i in range(epochs):
8 x_in = x[:,1].reshape(—1, 1)
9 y_pred = x_in *x w + b
10 if w > 0
11 dw =
12 else:
13 daWw = (= (2 % x_in.T.dot(y — y_pred)) — 11 ) / norm[1] =xx 2
14 db = — 2 % np.sum(y — y_pred) // norm[0] k% 2
15 w = w — rate x dW
16 b =5> ate * db
17 coeffs [0]
18 coeffs[1]
19 return coeffs

.(7 (2 % x_in.T.dot(y — y_pred)) + 11 ) / norm[1] =xx 2

r
b
W

Listing 4.8 SGD implementation for linear regression

The plot looks similar to the example without using the SGD, because of the small
data set. The weights are 49.8 and 0.30, and bias —101.72 and 1.17.

Ridge regression

Ridge regression is about to shrink the coefficients. The equation of the ridge regres-
sion can be written as

p

2
M p
Z yi — Zw‘i)'c,‘j +)sz?. (415)
i=1 j j=0

j=0

The XA adds a penalty to the coefficients w. It avoids having too high values of the
coefficients and adds the penalty whenever the values are too big. The value A:

e higher value means more penalty when the coefficients are bigger,
e lower values make it more like regular linear regression,
e higher values make the variance decrease, and the bias increase.

Elastic Net implements both L1 and L2 regularizators. The cost function is defined
as follows:
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{‘i NP Wik 2 . m m

Lm0 2an_0 DAY 12“Zw§+a2|w,| . (4.16)
j=1 j=1

The parameter « is between 0 and 1, where closer to 1 returns the result that is closer

to the one given by the ridge regression, 0 for Lasso. It is not easy to find the best

value of A, but we can use the cross-validation method to test at least a few values of

A and compare the results.

4.4 Logistic Regression

A different type of regression is logistic regression. Logistic regression [3] is based
on the logistic function. Itis shown in Fig. 4.9. It is very useful especially when we do
calculations based on probability theory, because the logistic function gives values
from O to 1, so it easily corresponds to probability. It can be calculated as follows:

ea+bx,- 1

Ylog = 1 + eatbxi = 1 + e—(at+bxi) : (4.17)
Logistic regression as well as linear can be found in featured books or articles as Y.
The parameters are also marked as « and B;. To avoid misunderstandings, we keep
a common nomenclature. As in linear regression, we need to find the parameters for
each problem separately. In logistic regression, it is a vector of parameters that is
called weights:

w = [b, al. (4.18)

The term weights is very often used in machine learning and we will describe it sep-
arately for each method. In logistic regression, the goal is to find the two parameters
that give the best representation of the data of a given problem. It would be best

Fig. 4.9 Logistic function 1
0.8
0.6
0.4

0.2
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if we could find such parameters that for each x; set in Eq. 4.17 we get the proper
y;. It can be done using one of the most known methods of a maximum likelihood
estimator, the Newton-Raphson method. It is an iterative method and requires more
calculations compared to linear regression. Weights are calculated in each iteration
as follows:

werr = wi + XV X (y = By, (4.19)

where k is the iteration number and V is a diagonal weight matrix. Diagonal weight
matrix elements can be calculated as follows:

Vii = 5)logi(1 - )A]log,)o (4.20)

The loop can end for two reasons. We can set a fixed number of iterations or we
can set a weight difference value between two iterations and end the loop when the
change in each iteration is below that value. Usually, it is set to 0.01 or lower.

Example 5 (Skin lesion) We have six patients with a skin lesion. Three lesions are
known to be not cancers and the other three are known to be cancer.

y=[010011]

‘We have two features that indicate if it’s cancer or not, so we need to estimate the
value of three parameters, and the weights vector looks at the start like:

w=1[000].

Let us construct our feature vector. The first feature is the asymmetry of the lesion. It
is a value from arange of 0 to 2 where 2 means total asymmetry and O total symmetry.
The second is the number of colors that are within the lesion. It is a value from the
range 0 to 6. As shown in Eq. 4.17, we need to multiply the weights vector with the
features vector matrix. This means that it needs to have three rows instead of two.
We need to add one column at the beginning filled with 1. Let the X look as follows:

100
125
112
113
104
123
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We need to calculate w x; in the first place:

[1105]=0.

g

=

Il
coo

The next step is to calculate the diagonal elements of matrix V. Before that we need
to calculate the logistic regression value for each x;:

v 1

Yiog, = —1 —I—eO = 5

The yiog, values are the same for each x; in the first iteration. The same with diagonal

elements:
1 1 1

V11 = E k E = Z
The weight matrix looks now as follows:
025 0 0 O O O
0 025 0 0 0 O
Vo — 0 0025 0 0 O
71 0 0 00250 0
0 0 0 0 025 0
0O 0 0 0 0 025

In the last step, we need to calculate new weight values. It is a bigger computation
of multiplied matrices and vectors, so we divide it into a few parts to keep it clear
and understandable. In the first place let’s calculate X7 V:

100" [025 0 0 0 0 0
125 0 025 0 0 0 O
ro 112 0 00250 0 O
XVo=1t1130 10 0 002 0 o0
104 0 0 0 0 025 0
(123 0 0 0 0 0 025

[0.25 0.25 0.25 0.25 0.25 0.25

= 0 05025025 0 05

| 0 12505075 1 075
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Next we multiply the results with matrix X and inverse the result:

100
0.25 0.25 0.25 0.25 0.25 0.25 i f g

xTvx)~l = 0 05025025 0 0.5 113
0 12505075 1 075) |

123

[ 2.91 —0.32 —0.68
=(-0.32 1.37 —0.37
| —0.68 —0.37 0.37

Once we are done with it we need to calculate the output vector and current py which

T
eV

- —— i elements for each x;:
T

is the vector that consists of pg(i) =

y—p=[010011]-[0.50.50.50.50.50.5]
= [-0.50.5 0.5 0.5 0.5 0.5]

The next step is to multiply inverted matrix (X7 V X)~! with X7:

1007
291 —0.32 —0.68 i f ;
xXTvx)y'xT =|-0.32 1.37 —0.37 113
| —0.68 —0.37 0.37 L04
123

291 —1.12 1.23 055 0.2 0.23
=[-0.32 0.57 031 —-0.06 -1.8 1.31
| —0.68 0.43 —0.31 0.06 0.8 —0.31

The last step in an iteration is to multiply two matrices that we have just calculated
together:

291 —1.12 1.23 055 02 023
xTvx)'xT(y—p)=|-0.32 057 031 —0.06 —-1.8 1.31
—0.68 0.43 —0.31 0.06 0.8 —0.31

-[-0.50.5 -0.5 0.5 0.5 0.5]
= [~2.69 0.077 0.92] .

As the previous weights vector was filled with zeros, the current weight vector is

w = [~2.69 0.077 0.92307692] .
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Table 4.4 Results after three iteration of Example 5

Xi —(a + Bixi + Bax2) Viog(Xi) | i
0,0) 10.02 0.00004 |0
2,5) —(—10.02 +2.46 + 14.35) = 6.78 0.99 1
(1,2) —(—=10.02+1.23 4+5.74) = -3.05 0.045 0
(1,3) —(—10.02 4+ 1.23 +8.61) = —3.23 0.038 0
0,4) —(—10.02 4+ 11.48) = 1.46 0.811 1
2,3) —(10.02 +2.46 + 8.61) = 2.51 0.924 1

Fig. 4.10 Logistic 1

regression of skin lesion

diagnosis example 0.8

0.6

0.4

0.2

After three iterations we get the following weight vector:
w= [—10.02052458 1.22700068 2.86618458] .

We could also do some more iterations. Now check the logistic regression value
for each x;. It is shown in Table 4.4. The results presented indicate that logistic
regression can be useful in some cases. Each x; that is cancer has a high value of
logistic regression, close to 1. The logistic regression value of benign lesions is close
to 0. We can draw it as presented in Fig.4.10.

The code of a simple logistic regression implementation should not take more
than 40 lines of code. An example is presented in Listing 4.9.

import numpy as np

2> from math import exp
3 from numpy.linalg import inv

5 class LogisticRegression:

def __init__(self):
self .weight= np.array ([0,0,0])

def set_y_vector(self,y):
self .y=np.array (y)

def set_x_vector (self,x):
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self .x=x

def set_iterations(self ,k):
self .k=k

def calculate_weight_matrix_v(self):
p_vector=[]
v_diag=1[1]
for j in xrange(len(self.x)):
w_t_x_i = exp(np.dot(self.x[j],self.weight))
p_vector.append ((w_t_x_i/(1+w_t_x_i)))
v_diag.append ((w_t_x_i/(1+w_t_x_i))+«(1—(w_t_x_i/(1+w_t_x_i))))
logging.info(v_diag)
v_matrix = np.diag(v_diag)
return [v_matrix,p_vector]

def calculate_parameters (self):
for i in xrange(self.k):
[v_matrix, p_vector] =self.calculate_weight_matrix_v()
print "det: " + str(np.linalg.det(np.dot(np.dot(self.x.
transpose () ,v_matrix),self.x)))
inv_x_t_v_x=inv(np.dot(np.dot(self.x.transpose(),v_matrix),
self.x))
y_p_substracted=np.subtract(self.y,np.array(p_vector))
inv_x_t_v_x_t=np.dot(inv_x_t_v_x,self.x.transpose())

self .weight=np.squeeze(np.asarray(np.add(self.weight,result)))

Listing 4.9 Logistic regression code sample

We need to use three external libraries: numpy to multiply, add, and subtract two
matrices, exp to calculate e % and inv to inverse the matrix. In the constructor,
we set the initial default weight vector values. The next two methods are just simple
setters of the X matrix and the y vector. Method set_iterations is about setting
the number of iterations as we stop after the number is reached. The last method called
calculate_parameters isthe core part that calculates the new weights. It uses
the method calculate_weight_matrix_wv that calculates the new V; matrix
in each iteration.

4.5 Naive Bayes Classifier

Bayesian classifiers are a set of methods that uses Bayes’ theorem or alternatively,
Bayes’ rule to choose the most matching class, based on some prior knowledge.
Typically, we have a training data set that contains vectors with the appropriate
class assigned to each of them. Such vectors may describe each case with multiple
features, both numeric and categorical. The simplest case is a binary classification
based on one-feature-long vectors. Having a training data set given, we would like
to ask what the most likely class is for a new object. This time we will not assume
single feature vectors or binary classification, but rather describe a general class of
problems, which usually affects many different features and classes. In most cases,
we do not have posterior probabilities given directly and there is no easy way to
calculate such probabilities, having only the data set. For that reason, we will use
Bayes’ theorem.



126 4 Introduction to Shallow Supervised Methods

We already explained a few probability terms in Chap. 2. Some more that still
need more explanation before we define the Bayesian rule is the prior probability.
P(A;) is called prior probability and is a probability of belonging to the i-th class
and can be simply estimated by counting the number of vectors having this class
in our training data set and normalizing it by a total number of vectors. P(B|A;) is
called likelihood and is a conditional probability of observing the vector x given that
it belongs to the i-th class. These values are usually estimated as a product of the
probabilities for each feature (A;) separately.

Once again, there is a need to estimate these feature-level likelihoods using a
training data set. This time, we will get a number of vectors that have a particular
value of the feature and belong to the i-th class. Then it will be divided by the total
number of vectors that have this value for this particular feature, regardless of which
class it belongs to.

The last remaining value is P(B), which is the probability that the object will
appear at all. To calculate this value, we would have to know the data distribution;
however, we may neglect it. It can be done, because this value will be the same for
all the probabilities, and we are looking for the class which maximizes the posterior
probability. If the denominator is common for all, then taking the maximum of the
nominator is enough. Finally, we can draw the Bayesian rule as follows:

P(B|Ag) - P(A;

PAIE) = P(B|Ay) - P(A)) + P(B|Ay) - P(A2) +---+ P(B|A,) - P(z‘zﬁ)z'l

)
The implementation of the Naive Bayes classifier is divided into three functions:
gaussian_pdf, calculate_probability, and the main function that uses
the second function to calculate the probability: naive_bayes_classifier.

def gaussian_pdf(x, mean, stdev):
exponent = exp(—((x—mean)*%2 / (2 % stdevxx2)))
return (1 / (sqrt(2 % pi) * stdev)) % exponent

def calculate_probability(x, class_probability, mean, stdev):
probability = class_probability
i=0
for feature in features:
probability *= gaussian_pdf (x[i], mean[feature], stdev[featurel])
i=1i+1
return probability

Listing 4.10 Naive Bayes Gaussian probability distribution

In Listing 4.10 a short Gaussian probability density function is implemented. Assum-
ing we have the Gaussian distribution in the data set. The PDF is used to calculate
the probabilities for a new object.

def naive_bayes_classifier(x):
probabilities = []

label = 0
class_probability = train_size / (train_size % label_count)

label_zero_probability = calculate_probability(x, class_probability,
mean_zero, std_zero)
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probabilities.append(label_zero_probability)

label_one_probability = calculate_probability(x, class_probability,
mean_one, std_one)
if label_one_probability > label_zero_probability:
label =1
probabilities.append(label_one_probability)

label_two_probability = calculate_probability(x, class_probability,
mean_two, std_two)
probabilities.append(label_two_probability)
if label_two_probability > label_one_probability:
label = 2

return label, probabilities

Listing 4.11 Naive Bayes classification method
In Listing 4.11 the probabilities for two labels are calculated as the case considered

to be solved is a binary classification problem.

results_prob = []
prediction = []

3 for x in test_set:

6

pred, probabilities = naive_bayes_classifier (x)
results_prob.append(probabilities)
prediction.append(pred)

accuracy = calculate_accuracy(prediction, test_labels)

Listing 4.12 Naive Bayes classifier execution method

The implementation in Listing 4.12 the implementation of the classifier is given and
the accuracy is calculated.

Example 6 (Covid-19 probability) Let B be a person with a positive COVID-19 test,
A be drawn by a random ill person, and A, be a healthy person. Let us assume that
P(A)) =0.05, P(A2) =0.95, P(B|A; = 0.92, P(B|A;) = 0.10. This means that
the test is positive for 92% of ill persons and 10% for healthy persons It is important
to get the probability of A;|B and it can be calculated as follows:

U7 P(BIA) - P(A)) + P(BlAy) - P(Ay)
0.92-0.05 ~ 03194,

~ 0.92-0.0540.10 - 0.95
This means that about 31.9% of patients with a positive test are actually ill.

Example 7 (Iris classified using Naive Bayes method) The Iris data set consists of
three classes. To simplify the usage of the Naive Bayes method, we use only two.
The data preparation is given in Listing 4.13.

from sklearn.model_selection import train_test_split

iris = load_iris ()
data_set = iris.data
labels = iris.target
data_set = data_set[:,:2]
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data_set = data_set[labels!=2]
labels = labels[labels!=2]

train_data_set, test_data_set, train_labels, test_labels =
train_test_split (
data_set, labels, test_size=0.2, random_state=15)

train_labels[train_labels<1] = —1

test_labels[test_labels<1] = —1

train_size = len(train_labels)

test_size = len(test_labels)

label_count = 2

feature_count = 2

mean_labelO = np.mean(train_data_set[[np.where(train_labels==—1)]]1[0], axis
=1)

mean_labell = np.mean(train_data_set[[np.where(train_labels==1)]][0], axis
=1)

std0 = np.std(train_data_set[[np.where(train_labels==—1)]11[0],axis=1)
stdl = np.std(train_data_set[[np.where(train_labels==1)]1]1[0],axis=1)

Listing 4.13 Naive Bayes classifier execution method

The functions are next limited to two classes in the naive_bayes_classifier
function. We changed the classes to 1 and —1 to simplify the classification. The other
functions are changed slightly to get the means from a list, not from a DataFrame
like in the previous Listing of this function.

from math import exp

from math import pi

def naive_bayes_classifier(x):

probabilities = []
label = -1
class_probability = train_size / (train_size * label_count)

label_zero_probability = calculate_probability(x, class_probability,
mean_labelO, stdO)
probabilities.append(label_zero_probability)

label_one_probability = calculate_probability(x, class_probability,
mean_labell, stdl)
if label_one_probability > label_zero_probability:
label = 1
probabilities.append(label_one_probability)

return label, probabilities

def gaussian_pdf(x, mean, stdev):
exponent = exp(—((x—mean)**2 / (2 % stdev**2)))
return (1 / (sqrt(2 % pi) * stdev)) * exponent

def calculate_probability(x, class_probability, mean, stdev):
probability = class_probability
i=0
for feature in range(feature_count):
probability %= gaussian_pdf(x[i], mean[0] [feature], stdev[0][
featurel)
i=1i+1
return probability

Listing 4.14 Naive Bayes classifier execution method
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It is interesting that for many sets of randomly chosen tests and trains, this method
achieves an accuracy of 100%.
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Chapter 5 ®)
Decision Trees Check for

Decision trees are one of the most popular machine learning methods. One of the
reasons is their easy usage and understanding. A decision tree is a method that can be
easily visualized and understood. We have tens of different decision trees [1-17]. A
decision tree is a method that divide the feature space on each level of a tree. It means
it is a non-linear method because it does a linear classification at each node. The tree
starts with a root and consists of decision nodes and leafs. It decouples the training
set into smaller sets based on some conditions related to one (univariate) or more
features (multivariate). As a result of the division, we can get one or more smaller
data sets of different sizes. The goal of a decision tree is to build a tree in a way that
we have objects of the same label in each leaf. A tree can be also written as a set of
rules as it is based on a set of choices at each node. That is why it is commonly used
in many decision-making software. It handles multiclass problems easily. We can use
decision trees to understand which feature has the major impact on the classification.
The more often a feature is used in decision nodes the higher impact it has on the
classification. Compared to some other methods, decision trees do not work like a
black box as hidden layers of a neural network. Another advantage of decision trees
is their performance. Compared to most methods it is fast. On the other hand, a small
change in training data can significantly change the rules and accuracy. Decision
trees can also easily overfit. Usually, there is more than one tree that works well for
a given data set. A more complex solution based on decision trees is called random
forest. It is described in Chap. 7. Random forest is a combination of many decision
trees. It usually gives much better results compared to decision trees. The random
forest method is commonly used for many classification problems as it gives often
better accuracy compared to regular neural networks or SVM. In this chapter, we
explain how decision tree methods work. We divided this chapter into four parts. In
the first part, we explain different types of trees and what the classification process
looks like. To simplify we used binary trees. The second part is focused on univariate
tree construction methods. It is an easier type of decision trees. We explain the most
common methods like CART and C4.5. The third part is dedicated to multivariate
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methods where the OC1 method is described in detail. The fourth part is about the
quality metrics in decision trees. A major part of this section is dedicated to tree
pruning methods.

5.1 Introduction to Tree-Based Classification

Decision trees are most likely binary trees. There are some exceptions, like the
CHAID or C4.5 methods, but most methods stick to binary rules. Binary trees are
trees in which each leaf/node has a maximum of two children. It is a structure where
each child has its own child, etc. To better explain it, we prepared an abstract data
set that is presented in Table5.1. In the set, we have two features, as it is easier to
understand when drawn on a two-dimensional space. The data set is divided into two
classes —1, 1.

We can easily plot this data set as shown in Fig. 5.1. It is not a linear classification
problem. We could try to use one of the previously explained methods, such as KNN.
A univariate decision tree uses multiple linear decisions to divide the data set into
sections of objects with the same label. At first glance, we might discover four such
sections of objects: two red ones in the middle, one blue on the bottom, and one blue
on the top.

The tree, when trained, makes a decision on one feature, which means that the line
is perpendicular to the axis. For example, for x; = 4, the line would be parallel to the
axis x, with a value of x; = 4. This would divide the data set into two smaller ones,
one on the left where x; < 4 and the other on the right where x; > 4. We can now
take both parts of the main data set and divide them again and again until we reach
sets where we have all objects of the same label. The training part of a decision tree
is to find out the division rules. An example of such a tree that divides the data set
Table 5.1 is shown in Fig. 5.2. The tree has only four decisions, and the features are

Table 5.1 Decision tree example data

Xil Xi2 Label Xil Xi2 Label
X1 0.5 0.5 —1 X11 1 7 1
X2 1.5 2 -1 X12 2 8 1
X3 2 4.5 -1 X13 1.5 9 1
X4 1 35 -1 X14 4 2 1
X5 25 4 -1 X15 6 3 1
X6 3.5 5.5 -1 X16 7 4 1
X7 6 6 -1 X17 9 2.5 1
X8 8 5.5 -1 X18 5 9 1
X9 9 6.5 —1 X19 7 8.5 1
X10 7.5 6 -1 X20 9 8 1
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Fig. 5.1 Two-dimensional feature space with objects from the data set given in Table 5.1

Fig. 5.2 Decision tree constructed for data shown in Table 5.1

used equally. This tree can be replaced with a nested set of rules. The rules in each
node can be drawn as in Fig. 5.3. We see that the rules divided the feature space into
five areas. What is important here is that all areas consist of an object of the same
label. In the tree, we have marked sets that are made based on previous decisions
with two colors: blue for the positive class and red for the negative class sets.

class BinaryLeaf:

def __init__(self, elements,
self .L = None
self .R = None
self .elements = elements
self.labels = labels
self.ids = ids
self.completed = False

Listing 5.1 Tree leaf in Python

labels, ids):
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The tree node consists of the left and right child node, objects (elements) that the
current node consists. The 1abels property is a list of labels where each value is
reflected to each object at this node. The last property is a Boolean field that gives us
a better understanding of how this node should be divided. A node is completed if
unique values of label list if equal to 1. The second reason is that objects cannot
be divided anymore. In such cases, we return the prediction as the majority labels
in this node, or if we have the same number of labels for each class, we return the
prediction randomly.

5.2 Tree Operations

We have four major tree operations: growth, division, prune, and merge (aggregation).
The tree growing as shown in Fig. 5.4a, b is an obvious operation. It is done during
the training phase of a decision tree method. The goal is also to build a more accurate
decision tree by adding new decision nodes. A similar operation is a split of data
within a node into two leafs. Compared to tree growth operation, division is related
to just one node split where grow is about a node grow, multiple splits. Pruning trees
is a very important part of each decision tree method. The decision tree can easily
overfit. It happens often when the tree is too complex. It will divide the feature space
into too many small pieces and does not generalize the problem well. This can be
fixed with tree pruning by reducing unnecessary nodes and leaves. There are different
types of tree pruning. We dedicated a separate section for tree pruning methods as
it is very important to know how to avoid overfitting in decision trees. The last tree
operation that we would like to explain is tree aggregation. It also reduces the number
of leafs as is done in pruning methods. The difference is that in pruning we deleted
the leafs of a node, where aggregation means merging of two nodes on the same
level.



5.2 Tree Operations

) Before growth ) After growth

) Before division ) After division
ﬁ %Q\_ ;
) Before pruning f) After pruning
) Before aggregatlon (h) After aggrega-
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Fig. 5.4 Tree operations: growth, division, pruning, and aggregation
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Fun fact: Decision trees are like overzealous know-it-alls—they eagerly
make decisions based on what they’ve observed, but sometimes they come
up with hilariously specific rules. For example, a poorly tuned decision tree
might declare with absolute certainty, “If it’s cloudy, you own three cats, and
your neighbor plays jazz, then you should definitely buy a sports car!” [18]
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5.3 Impurity Measures

Impurity measures are used to check how homogeneous or heterogeneous a given
data set is. If a data set has many classes it means that it is heterogeneous (impure).
The opposite is homogeneous, which means that the data set is pure. The impurity
measures are used to split a data set into two child nodes in a decision tree. There
are many impurity measures:

Gini index,

Entropy (information gain),
Classification error,
Likelihood-ratio method,
DKM impurity method,
Orthogonal criterion.

We describe only two methods as only these two are used by the methods we explain
in this chapter. More sophisticated impurity methods exist. Likelihood-ratio method
is based on Chi-Squared statistics and information gain [19]. A method that gives
good results in small trees is the DKM impurity method [20]. There is a method
based on the area under the curve (AUC) [21]. We have described AUC in Sect.
1.6. Distance measure can be used as a stop criterion [22]. A similar to gain ratio
method was introduced in [23]. Orthogonal criterion [24] was proved to give better
results than information gain in some cases. We can also use statistics measures like
permutation [25] or probability measure [26, 27].

5.3.1 GiniIndex

The Gini index [28] measures the probability of misclassification by a split. It means
that the lower value of Gini index is a lower probability of misclassification of a
given split. We can calculate the index value as

IgX)=1-Y pl. (5.1)

i=1

where m is the number of potential discrete values or ranges of continuous values,
and p is the probability of a specific feature value in the data set. The values of the
Gini index are shown in the Fig. 5.5. If we assume we have a customer segmentation
problem to solve where the label is the information if the customer buy or not. It
depends on a few features and one of the features is the city. Let the city be Berlin
and to simplify we have 4 cases where the customer buy and one where not. The
index value of this split, based on Berlin would be:
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Fig. 5.5 Gini index values
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The index needs to be calculated for each city against the other options if we want to
build a binary tree because in this case, we can split only into two groups. It means
that for the location feature, we need to calculate every possible combination of sets.
In the case of three feature values, we have to calculate three Gini index value sets.
The features gini index calculates the gini index for the split and takes the values of
the features into consideration. The general formula of the feature split gini index is
defined as

Ig(feature) = 1 — Y p; x I6(X), (5.2)

i=1

where X; is the split set. For three cities: Berlin, London, and Paris we need to
calculate the split gini index for three possible splits. If we assume we have an equal
number of cities:

e Berlin versus London and Paris
1 . 2 .
I (feature); = 1 — gl (Berlin) + 31 (London, Paris) |,
e London versus Berlin and Paris
1 2 . .
I (feature), = 1 — 51 (London) + 51 (Berlin, Paris) |,
e Paris versus London and Berlin

1 2
I (feature); = 1 — <§I (Paris) + 51 (London, Berlin)) .
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We should calculate all possible splits on each feature to get the final lowest value
of the Gini index in each leaf. A small Gini index value means more objects of the
same label in a leaf. We should split on the highest gini index value to get in the leafs
lower and lower values in each next split.

5.3.2 Entropy and Information Gain

Entropy (information gain) [29] is used to measure how many information we have
within a set. In other words, if there are more objects of the same label in a set there
higher the entropy measure is. It means that higher entropy is a better factor for a
split. Possible values are given in Fig.5.6. The formula for the entropy is defined as

E(X)=-)_ pilog, pi. (5.3)
i=1

To take a decision on what features should we split on, we need to calculate the
information gain value based on the features entropy and the total entropy that we
get based on all features:

1G (Feature) = E (Decision) — E (Feature), 5.4

where E (Decision) is the total entropy where we take into consideration all features.
We use for Eq. 5.3. If we have 9 objects in our data set, the E(Decision) takes all
objects for example:

5 5 4 4
E(Decision) = — | = log, = + = logy, — | = —1(—0.0471142 — 0.5199787) = 0.991076.
9 %29 "9 %29

The feature entropy is calculated as a weighted entropy of all possible entropy values
of a given features:

Fig. 5.6 Entropy values for 1
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m

E (Feature) = Z piE(x:). (5.5)
(=0

Let’s assume we have the same 9 objects where the locations are equally divided by
London, Berlin, and Paris. If we have two objects with a positive decision where the
location is London, one for Berlin, and none for Paris, we get

=1 (3o ()« (32 (1)

= 0.918296,

E(Berlin) = 1 ((%) log, (%) " @) 2loes (%))

= 0.918296,

. 3 3
amen=-1 () ()

=0.

The location entropy will be

3 3
E (Location) = 5 % 0.918296 + 5 % 0.918296 + 0 = 0.6121947.

The information gained for the location features is
I1G(Location) = 0.991076 — 0.6121947 = 0.3788813.

We should do it for all features and compare the values. The highest should be taken
as the feature that we split on. The data set where we do the calculation is the same
as in Gini index and is limited to the data set of a node that we want to split.

5.4 Binary Trees with Classification and Regression Trees
Method

Classification and regression trees (CART) are one of the most popular and one of
the first decision tree methods [30]. Build a decision tree based on a binary tree. This
means that it divides the data set into two on each level of a tree. CART uses the Gini
index to find the best possible split. The method consists of the following steps:
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1. calculate the Gini index for each feature,
2. take the lowest value of the Gini index and split the node into two child nodes,
3. repeat the steps until we have all child nodes.

The leaf in CART looks like

Tree helper functions

There are several helper functions that are used by our CART method. We use the
methods to manipulate the tree, use these to get the Gini index or make the split. We
have seven methods. The implementation of each function is given in Listing 5.2.

def

def

def

def

def

def

get_number_of_labels_for_value(node, objects, feature_id, label):
count = 0
if not isinstance(objects, list):

elements_list = [objects]
else:
elements_list = objects
column_elements = get_node_elements_column(node.elements, feature_id)

for i in range(len(elements_list)):
for j in range(len(column_elements)):

if column_elements[j] == elements_list[i]:
if node.labels[j] == label:
count = count + 1

return count

get_node_elements_column(elements, feature_id):
return np.array(elements)[..., feature_id].tolist ()

check_completed(labels, elements):
ratio = len(get_unique_labels(labels))
if ratio == 1:
return True
elements = sorted(elements)
duplicated = [elements[i] for i in range(len(elements)) if i == 0 or
elements [i] != elements[i — 1]]
if len(duplicated) == 1:
return True
return False

get_unique_labels(labels):
return np.unique(np.array(labels)).tolist ()

get_unique_values (elements):
features_number = len(elements [0])
unique = []

for i in range(features_number):
unique.append(np.unique(np.array(elements) [:,i]))
return unique

is_leaf_completed(node):
if node.is_completed():
if node.get_L() != None and not node.get_L().is_completed():
return node.get_L()
elif node.get_R() != None and not node.get_R().is_completed():
return node.get_R()
elif node.get_L() == None and node.get_R() == None:

return None
elif node.get_L().is_completed() or node.get_R().is_completed():
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new_node = is_leaf_completed(node.get_L())
if new_node == None:
return is_leaf_completed(node.get_R())
else:
return new_node
else:
return None
return node

def get_current_node (node):

return is_leaf_completed(node)

Listing 5.2 Tree helper functions

The method get_unique_labels returns the unique labels based on the list of
labels given in the argument. The method get_unique_values is a bit more
complex because it is not only about unique objects in a list, but about unique
objects in a list of lists. is_leaf_completed is a very important method to
check if a leaf needs to be split or not. It goes through the node given in the argu-
ment and checks each leaf that still needs to be split or not. It goes deeper and
deeper through the tree until it finds a leaf. If not, it returns a None value. The
get_number_of_labels_for_value method is used by the Gini index cal-
culation method where the number of labels occurrence for a specific feature value is
apart of the Gini equation. This method uses the get_node_elements_column
method to get the feature columns. The sixth method check_completed is used
by the split method to check if the leaf can be marked as the one that still needs to
be split or not. The last one get_current_node is used to find the current leaf
to split. It uses the is_leaf_completed method to make the check.

Gini index

The Gini index is calculated with the equations explained in the previous section.
For a binary tree, it can be implemented as in the Listing 5.3.

def calculate_gini(node, splits, feature_id):

obj_count = len(node.labels)

left_count = np.count_nonzero(np.isin(np.array(node.elements)
[:,feature_id], splits[0]))

right_count = obj_count — left_count

1
1

prob_sum_left
prob_sum_right

for label in get_unique_labels(node.labels):

prob_sum_left = prob_sum_left — (get_number_of_labels_for_value
(node, splits[0], feature_id, label)/left_count)**2
prob_sum_right = prob_sum_right — (get_number_of_labels_for_value

(node, splits[1], feature_id, label)/right_count)**2
return 1 — (left_count/obj_count)* prob_sum_left — (right_count/
obj_count)* prob_sum_right

Listing 5.3 Gini index method

In the binary tree, we have only the left and right leaf. As arguments, we get the
current node, a list of split objects, and the feature. In the fourth line, we get
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the left_count which is the number of objects of a given value for feature
feature_id. In the loop, we go through each label and find the values that are
available in the data set for it. This gives us the Gini index values for the left and
right leaf. The function returns the feature gini index using the previously calculated
left and right gini indices.

Split

The split is done in two steps in the Code 5.4. The method get_split_
candidates gets unique values of a feature as an argument and returns all possible
split scenarios as a list. Loops over the unique values and adds one value as the left
split and the rest as the right. The loop ends when there are no more feature values
left.

def get_split_candidates (unique_values):

split_list = []

for i in range(len(unique_values)):
current_list = []
temp_list = copy.deepcopy(unique_values)
current_list.append(temp_list[il])
del temp_list[il]
current_list.append(temp_list)
split_list.append(current_list)

return split_list

def split_node(current_node, value, split_id, split_history):
left_leaf = []
left_leaf_labels = []
left_leaf_ids = []
right_leaf = []
right_leaf_labels = []
right_leaf_ids = []
for i in range(len(current_node.elements)):
if current_node.elements[i] [split_id] == value:
left_leaf.append(current_node.elements[i])
left_leaf_labels.append(current_node.labels[i])
left_leaf_ids.append(current_node.ids[i])
else:
right_leaf.append(current_node.elements[i])
right_leaf_labels.append(current_node.labels[i])
right_leaf_ids.append(current_node.ids[i])
if len(right_leaf_labels) == 0 or len(left_leaf_labels) == 0:
current_node.set_completed ()
return current_node, split_history
split_history.append ([str(current_node.ids), str(left_leaf_ids)])
split_history.append([str (current_node.ids), str(right_leaf_ids)])
current_node.set_L(BinaryLeaf (left_leaf, left_leaf_labels,
left_leaf_ids))
current_node.set_R(BinaryLeaf(right_leaf, right_leaf_labels,
right_leaf_ids))
current_node.set_split(split_id)
current_node.set_completed()
if check_completed(left_leaf_labels, left_leaf):
current_node.L.set_completed ()
if check_completed(right_leaf_labels, right_leaf):
current_node.R.set_completed ()
return current_node, split_history

Listing 5.4 Splitting function in CART method
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The second method divides. It takes the node that we want to split as one of the
arguments. The second is the value of the feature that we assign to the left leaf.
The third argument is the split_1id that has the highest gini index. The loop is
the main part of the function where the split to the left and right leaf happens. We
add node objects, labels, and ids to the new pages. The ids are saved in a leaf
property, because sometimes it is easier to use the id of an object rather than the
whole description of it. Especially when we want to plot it. The last argument is used
to save the split history in one variable.

Build a tree

In the building method, we use the data set of objects (feature vectors) and the labels
that correspond to them. The build method implemented in the Listing 5.5 consists
of four parts: initialization part, find the best combination of features for the split,
make the split, and find the next node to split.

def build(data_set, labels):
stop_criterion = False
ids = list(range(len(data_set)))
root = BinaryLeaf (data_set, labels, ids)
current_node = root
split_history = []

while stop_criterion == False:
unique_values = get_unique_values(current_node.get_elements())
max_unique_id = 0

max_split_id = 0
max_value = 0.0
for feature_id in range(len(unique_values)):
if len(unique_values[feature_id]) ==
continue
split_candidates = get_split_candidates (unique_values
[feature_id].tolist ())
for j in range(len(split_candidates)):
current_value = calculate_gini(current_node,
split_candidates[j],feature_id)
if max_value < current_value:
max_unique_id = feature_id
max_split_id = j
max_value = current_value
current_node, split_history = split_node(current_node,
unique_values [max_unique_id] [max_split_id], max_unique_id,
split_history)
new_node = get_current_node(root)
if new_node != None:
current_node = new_node
else:
stop_criterion = True
return root, split_history

Listing 5.5 CART tree build main method

The initialization part consists of the root node setup. We create just an instance of a
BinaryLeaf and set all properties like the objects, labels, and ids. The history is
set to an empty list. The stop criterion is set to False and is checked at the end of the
loop. In the second part, we loop over the unique feature values to find the maximum
Gini index. It’s calculated in line 18 and the check is done in the line after. The split
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is done for the best split candidate in line 23. Finally, we get the next node that can
be split in line 24. If the returned value is different than None, the stop criterion is
not met and we use the next node and take the actions again from the beginning of
the loop. The new node is searched using the root node and not the currently used
node. This guarantees that we check all possible nodes in the tree.

def plot_tree(split_history):
tree = pydot.Dot(graph_type=’graph’)
for split in split_history:
new_edge = pydot.Edge(split[0], split[1])
tree.add_edge (new_edge)
tree.write(’cart_tree_new.png’, format=’png’)

Listing 5.6 CART tree build main method

When the tree is built, we can also plot using the pydot package. It is dedicated to
plot nodes and connections between these. In the Listing 5.6 we use this library and
loop over the split history to draw the tree. The method loops over each split and
adds nodes in line 4 and the connection between the nodes in line 5. We can save it
as an image as shown in line 6.

Example 1 (Customer segmentation with CART decision tree method) In this exam-
ple, we use a decision tree for customer segmentation. The goal is to find out if there
are some features that are specific to customers who buy the product or not. We
simplified the data set to be able to follow the steps of the CART method. The data
set that we use in this example is given in Table5.2. We have four features: loca-
tion, product category, customer gender, and information if the customer checked the
review before the purchase. CART generates binary trees, so we need to calculate
the Gini index for each feature. Let us take the location feature as the first feature
and calculate the Gini index for it. We have three split candidates that we explained
already:

e London versus Berlin and Paris
e Berlin versus London and Paris,
e Paris versus London and Berlin.

The first split candidates are London versus Berlin and Paris. The Gini index for
London can be calculated as

2\?  /5)\?
Ig(London) = 1 — <5> T (3> = 1—(0.081 +0.51) = 0.4087.

We have seven objects where the location feature is London. The decision ratio is

two to five, which means that two customers from London bought our product and
five did not. For the right leaf, we get

AANS
I (Paris and Berlin) = 1 — <—) + (—) =1-(0.76 +0.015) = 0.22.
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Table 5.2 Customer segmentation data set example

ID Location Category Gender Product Customer
review check | decision

1 Berlin Furniture Male Yes True

2 London Furniture Male Yes True

3 Berlin Furniture Female Yes False

4 Berlin Textile Female Yes True

5 London Electronics Male Yes False

6 London Textile Female Yes False

7 Paris Textile Male No True

8 Berlin Electronics Male Yes True

9 Paris Electronics Male No True

10 London Electronics Female Yes True

11 Paris Furniture Female No True

12 Berlin Textile Female No True

13 London Electronics Female No False

14 London Furniture Female Yes False

15 London Textile Female No False

We have seven objects from London, and the total number of objects in our data
set is 15. This means that we have eight Berlin and Paris objects together. For both,
seven bought the product and one did not. Now, we can calculate the Gini index for
the location feature:

7 8
Ié(Location) =15 * 0.4087 + 5 %022 =1-0.1907 — 0.1173 = 0.69194.

The results for all combinations of all features are given in Table 5.3. If we do the first
split we end with a tree of two levels that looks as in Fig. 5.7. To find the next node we
first go through the left leafs and next to the right if there is no node to be split on the
left side. We can see it in the Listing 5.2 in the method is_leaf_complete. The
first test is done on line 42 on the left node and on the right. We can do it randomly
or change the order to start the split in a different order. In the left-first approach, the
next node is the one with all customers from London. In the second node, we repeat
the steps from the first step. This time we have customers only from London and this
is the reason why we cannot split on location features this time. In the second step,
we get the Gini index values as in Table 5.4. This time we split up into categories.
We have two Gini indices that have the same values, but in Listing 5.5 in line 19,
we have a less sign that can be replaced with less or equal sign to get the last option
if there are two same values. After the second step, we get a tree as in Fig.5.8. The
difference in the second split is that all London customers that are looking on textile
products do not buy the product. The other two features do not matter for this path.
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Table 5.3 Gini index split

values for all features of the
example data set in the first
step

5 Decision Trees

Nodes Gini index
London 0.4087
Paris and Berlin 0.22

Gini index 0.69194
Berlin 0.32
London and Berlin 0.5

Gini index 0.56

Paris 0

London and Berlin 0.5

Gini index 0.6
Category Gini index
Furniture 0.48
Textile and electronics 0.48

Gini index 0.59
Textile 0.48
Furniture and electronics 0.48

Gini index 0.52
Electronics 0.48
Textile and furniture 0.48

Gini index 0.52
Gender Gini index
Male 0.49
Female 0.27

Gini index 0.59
Review Gini index
Review 0.44
Direct 0.49

Gini index 0.52

‘We come to this conclusion because all objects in the node marked with red have the
same negative label. After a few more steps the method ends, because there are no
more nodes to split. The final tree looks as shown in Fig.5.9. The red nodes are the
nodes with only negative labels and the blue nodes are the nodes where customers
buy the product. As a company, we want to have such a solution to understand the
profile of our customers and add changes to our solution to fill more of these red

nodes in blue ones.
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Fig. 5.7 Tree after the first step of the CART method

Table 5.4 Gini index split
values for category, gender,
and review features of the
example data set in the
second step
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Category Gini index
Furniture 0.5
Textile and electronics 0.32

Gini index 0.63
Textile 0
Furniture and electronics 0.48

Gini index 0.66
Electronics 0.44
Textile and furniture 0.375

Gini index 0.59
Gender Gini index
Male 0.32
Female 0.5

Gini index 0.63
Review Gini index
Review 0

Direct 0.48

Gini index 0.66

5.5 Univariate Non-binary Trees with C4.5 Method

This method [31] uses the entropy as a measure of the split of the nodes. It does
not create a binary tree so that each node level can have more than two children.
The algorithm steps are similar to those in the case of CART. The tree node is
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lectronics
and
Furniture

Fig. 5.8 Decision tree built on the second step of the CART method

lectronics)
and
Textile

lectronics'
and
Furniture

Fig. 5.9 Decision tree build using CART method based on the customer segmentation data set
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implemented in a different way to be compliant with the non-binary tree approach.
It does not have the L and R properties, but instead, we have a list of child leafs that
is setas a child_leafs property. The rest is the same as in the CART leaf. The
implementation of the node is given in Listing 5.7.

class Leaf:

def __init__(self, elements, labels, ids):
self.child_leafs = []
self .elements = elements
self.labels = labels
self.completed = False
self.ids = ids

Listing 5.7 A non-binary leaf

The helper functions known from the CART are the same, because all except one
work for binary and non-binary trees in the same way. This means that there are
no changes in the helper methods except the is_leaf_ completed method that
takes the node as an argument.

def is_leaf_completed(node):
if node.is_completed():
child_nodes = node.get_child_leafs ()
if len(child_nodes) == O0:
return None
is_child_to_return = False
for i in range(len(child_nodes)):
if not child_nodes[i].is_completed():
return child_nodes[i]
else:
new_node = is_leaf_completed(child_nodes[i])
if new_node != None:
is_child_to_return=True
if is_child_to_return:
return new_node
return node

Listing 5.8 Helper function differences

Instead of a check on the left and right nodes, in this case we need to loop over all
child nodes and check which node is still one that can be split.

Entropy

The entropy is a short function in which we take the labels of a node as an argument.
In the Listing 5.9 we get the unique labels and count them in the first step.

def calculate_entropy(labels):

unique_labels, labels_count = np.unique(labels, return_counts=True)
entropy = 0
size = len(labels)

for i in range(len(unique_labels)):
if labels_count[i] > 0:
log2 = log((labels_count[i] * 1.0) / (size x 1.0), 2)
else:
log2 = 0.0
entropy = entropy — 1.0 % ((labels_count[i] * 1.0) / size) x log2
return entropy

Listing 5.9 Entropy and information gain calculation for the C4.5 method
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Next, we loop over the unique labels and calculate the entropy values with log,
for each label. Finally, we subtract the values from the results to get the deci-
sion entropy E(Customer) for a given feature. This method is then used in the
calculate_split_candidate_entropy to get the entropy for each split
candidate.

Split

The split consists of two steps: possible splits entropy calculation and the split method
itself. In the Listing 5.10 one of the possible implementations is given. In the method
calculate_split_candidate_entropy we calculate the information grain
based on the decision entropy given in the argument as full_entropy and the
split candidates’ entropies. We loop over unique objects and count the labels assigned
to each one. For each label for which the count is greater than 0, we add the entropy
to the split_entropy. This part is the implementation of Eq. 5.3. The last line
of this function is the implementation of Eq. 5.4.

def calculate_split_candidate_entropy(full_entropy, labels, elements,
unique_labels, unique_elements, iter):
split_entropy = 0
for i in range(len(unique_elements)):
indices = np.where(np.array(elements)[..., iter].tolist() ==
unique_elements [i])
unique_size = len(indices[0].tolist())
filtered_labels = np.array(labels) [indices]
for j in range(len(unique_labels)):
labels_count = filtered_labels.tolist().count(unique_labels
[iDH
if labels_count > O:
log2 = log((labels_count % 1.0) / (unique_size % 1.0), 2)
else:
log2 = 0.0
split_entropy = split_entropy — 1.0 x (
(labels_count % 1.0) / unique_size % 1.0) * log2 =
unique_size % 1.0 / len(elements) % 1.0
return (full_entropy — split_entropy)

def split(current_node, split_values, column_id, split_history):

new_leafs = []
for i in range(len(split_values)):
indices = np.where(np.array(current_node.get_elements())[...,
column_id].tolist () == split_values[i])
new_leaf_elements = np.array(current_node.get_elements())[indices
J.tolist ()
new_leaf_labels = np.array(current_node.get_labels()) [indices].
tolist ()
new_leaf_ids = np.array(current_node.get_ids()) [indices].tolist ()
new_leaf = Leaf(new_leaf_elements,new_leaf_labels, new_leaf_ids)
split_history.append ([str (current_node.ids), str(new_leaf_ids)])
if len(np.unique(new_leaf_labels)) == 1:

new_leaf.set_completed ()
new_leafs.append(new_leaf)
current_node.set_child_leafs(new_leafs)
current_node.set_completed ()
return current_node, split_history

Listing 5.10 C4.5 tree build main method
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The second function is similar to the one of CART that generates possible divisions.
In the implementation of the function in Listing 5.4 the main difference compared
to the CART method is the way how we make the split. The new_1leaf variable
contains the newly created leaf created in the loop based on the split_values.
We set all three properties in the first part of the loop: labels, objects, and ids. In the
second part, we check if this leaf can be split in the next loop of the method or is
already a consistent leaf.

The tree

The building method is similar to the CART with a few small differences. An imple-
mentation is given in the Listing 5.11.

def build(root):

stop_criterion = False

split_history = []

current_node = root

unique_labels = get_unique_labels(root.get_labels())

while stop_criterion == False:
unique_values = get_unique_values(current_node.get_elements())
full_entropy = calculate_entropy(current_node.get_labels())
max_entropy_id = 0
max_entropy_value = 0

for i in range(len(unique_values)):
split_entropy = calculate_split_candidate_entropy(full_entropy

>

current_node.get_labels (),
current_node.get_elements (),
unique_labels,

unique_values[i], i)
if split_entropy > max_entropy_value:

max_entropy_id = i
max_entropy_value = split_entropy
current_node, split_history = split(current_node, unique_values[
max_entropy_id], max_entropy_id, split_history)
new_node = get_current_node(root)
if new_node != None:
current_node = new_node
else:
stop_criterion = True

return root, split_history

Listing 5.11 C4.5 tree build main method

In the first part of the loop, we calculate the decision entropy and save it in the
full_entropy variable. The method for each split then calculates the information
gain and finds the lowest one. The last lines are exactly the same as in the CART
tree-building method.

Example 2 (Customer segmentation with C4.5) In this example, we calculate the
entropies of each feature value. For the customer segmentation data set and the
location feature first possible split we get
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B W EE

= —1(0.2857 * (—1.807) + 0.7142 % (—0.4895)) = 0.8617,

(@) (=)

—1(0.8 % (—0.3219) + 0.2 % (—=2.319)) = 0.7218,

E (Berlin)

E (Paris) = —1(% log,(1)) = 0.

The next step is to calculate the customer decision entropy. It is called also a target
or total entropy:

E(Customer) = —1 ( —log, (— ) + 2 log, (2
womel =" 15 %\15) T 15 82\ 15

= —1(0.6 % (—0.7365) + 0.4 % (—1.3219)) = 0.9708.

Next, we need to calculate the entropy for the location feature:

5 7 3
E (Location) = ' *0.7218 + 5 *0.8617 + s x 0 = 0.2406 4 0.4021 = 0.6427.

Finally, we can calculate the information gain for the location feature:
I G (Location) = E(Customer) — E (Location) = 0.9708 — 0.6427 = 0.3281.

We calculate the information gain for each feature. The customer decision entropy
E (Customer) stays the same for each feature. The entropies for each feature are
given in Table5.5. For the category features, the information gain is 0, because the
entropies for each value are the same as the decision entropy. The data is divided in the
same ratio for the category feature as for the whole data set. The gender information
gain is the second highest value. The gain in product review feature information is
low as well. The node is divided by the feature with the highest information gain. In
the first step, it is the location feature. C4.5 will divide the root node into three leaf
based on as shown in Fig.5.10. The Paris node has already all objects of the same
label. In this case, all Parisian customers buy the product. In the second step, we
have two nodes to choose from: Berlin and London customers. For both nodes, we
can skip the location feature entropy calculation, because there is only one unique
value available. The decision entropy is calculated only on the node objects set and
is for customers from Berlin in the level two node:
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Table 5.5 Entropy values for
category, gender, and review
features of the example data
set in the first step of the C4.5
method

Fig. 5.10 First split with
C4.5 method and the
customer segmentation data
set
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Category Entropy
Furniture 0.97095
Textile 0.97095
Electronics 0.97095
Category entropy 0.97095
Information gain 0
Gender Entropy
Male 0.991076
Female 0.65
Gender entropy 0.85465
Information gain 0.116296
Review Entropy
Review 0.9182958
Direct 0.991076
Product review entropy 0.961964
Information gain 0.008986

. 1 1 4 4
E(Decision) = —1 | - log, 3 + 3 log, 3 = 0.7219.

5

The category entropy equals to 1 for the furniture and zero for textiles and electronics:

1 1 1
E (Furniture) = —1 (— log, 2 + 3 lo

. 0 0 2
E (Textile) = —1 > log, 3 + 3 log,

2

1—1
gzz—v

)
Z)=o,
2

E (Electronics) = —1(11log, 1) = 0.
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Table 5.6 Entropy values for category, gender, and review features of the example data set in the
second step of the C4.5 method

Gender Entropy
Male 0.92183
Female 0
Gender entropy 0.55098
Information gain 0.171
Review Entropy
Review 0
Direct 0.81128
Product review entropy 0.649
Information gain 0.07289

This gives us the entropy for the category features as
2
E(Category) = 3
This makes the information gain:

1G(Category) = 0.7219 — 0.4 = 03219.

The other results of the information gain and entropies are given in Table5.6. The
category feature has the highest information gain. The tree after the second split looks
as shown in Fig.5.11. This time two more nodes have objects with only one label.
After a few more iterations we get the final tree. The final decision tree for customer
segmentation using the C4.5 method is shown in Fig.5.12. The final tree has five
levels and 18 nodes, including 11 nodes with objects of the same label. Compared to
the tree built using the CART method, this tree has less levels by one and less nodes.
The conclusion is that the C4.5 can be used to build less complex tress.

5.6 Multivariate Decision Trees with OC1 Method

There are many multivariate decision tree methods. Just to mention a few of the most
popular:

OCl,
LMDT,
CART-LC,
MARS.
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Fig. 5.11 Second step of the C4.5 method and customer segmentation data set

Checked
review

Fig. 5.12 Decision tree based on the data set 5.2 build with the C4.5 method

Did not
checked

Some methods like CART-LC are the multivariate version of the CART method.
The main difference between univariate and multivariate methods is that the deci-
sion is made based not on just one feature, but on more. It is easy to illustrate the
advantages of this approach. In Fig.5.13 the data set marked with red and blue is
not linearly separable. The univariate tree method divides the feature space into
several sections that can be summarized as a decision boundary marked with orange.
With two features, we can draw a boundary marked with green. Such an approach
requires fewer steps and is more efficient in many cases. The multivariate method
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Fig. 5.13 Linear separable 10
example classified with x x
univariate (marked yellow) 8 %
and multivariate decision X y
trees (marked green) 6 o « «
Q‘ @]
4 o O «
O © O X
2 o o
© o]
0
0 2 4 6 8 10
X1
Fig. 5.14 Multivariate
decision tree based on data
from Listing 5.13
no yes

used to classify the data set in Fig.5.13 can be written as a linear function as shown
in Fig.5.14. There are a few advantages of multivariate decision trees:

e we split on more than one feature, which usually gives a tree with a smaller high
value, which means a faster prediction,
e solve non-linear classification problems.

The disadvantage of a multivariate method is the parameters that need to be set.
Almost every univariate decision tree method can be easily changed to multivariate
methods. In this section, as the multivariate method, we show the implementation of
the OC1 classifier. The OCl classifier is divided into several steps:

get possible hyperplanes H,
choose one hypothesis,

perturb and find v;,

calculate gini index of each H;,
choose H; with lowest gini index.

The OC1 method builds binary trees. It

RAREaI i
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Get possible hyperplanes

In the method in Listing 5.12 we calculated all possible hyperplanes by calculating
the Gini indices for each feature. It is kind of similar to what we have done in the
CART method, but it will be fixed during the perturbation part of the OC1 method.

def get_all_possible_splits_by_gini(self,leaf):
data_set = leaf.elements
labels = leaf.labels
ginis = []
for i in range(self.feature_number):
feature_ginis = []
feature_column = data_set[:, il
for feature in feature_column:
distinguish = feature_column <= feature
left_labels = labels[distinguish]
right_labels = labels[~distinguish]
gini = 1 — self.calculate_gini(left_labels) — self.
calculate_gini(right_labels)
feature_ginis.append([feature,gini])
ginis.append(min(feature_ginis))
return ginis

Listing 5.12 Get all possible splits and sort it by gini index value

In the method below (Listing 5.13) we compute the V; which gives us the knowledge
if a given object is above or below the hyperplane. It can be formulated as

d
Y aixi +ag > 0, (5.6)

i=1

where ay, ..., az4 are coefficients. In our case a,; is our label.

def get_coefficiency(self, splits):
scv = np.zeros(len(splits)+1)
min_split_index = np.argmin(splits)
scv[min_split_index] = 1
scv[—1] = —splits[min_split_index][1]
return scv

Listing 5.13 Calculate the coefficiencies

The next step is to divide objects in the leaf into two sets which are above and below
the hyperplane (see Listing 5.14).

def divide_data_hiperplane(self,leaf,scv):
below = []
above = []
below_labels = []
above_labels = []
for i in range(len(leaf.elements)):
v = self.compute_v(leaf.elements[i],scv) > O
if v:
above.append(leaf.elements[i])
above_labels.append(leaf.labels[il])
else:
below.append(leaf.elements [i])
below_labels.append(leaf.labels[i])
return np.array(below), np.array(above), np.array(below_labels), np.
array (above_labels)

Listing 5.14 Split the data based on the hyperplane
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We can compute the membership array as in Listing 5.15.

| def compute_u(self, element, scv, feature):
2 return (scv[feature] % element[feature] — self.compute_v(element, scv)
) / element[feature]

Listing 5.15 Calcualte membership matrix U

The code is an implementation of the U; equation:

_ AmXjm — Vj

U; = (5.7)

Xjm

Perturb

In the method in Listing 5.16 we compute the V; which gives us the knowledge if a
given object is above or below the hyperplane. It can be formulated as Z;l:l aix; +
ag+1 > 0, where ay, ..., aqs4 are coefficients. In our case, a4 is our label.

| def compute_v(self,element, scv):
2 return np.sum(np.multiply(element, scv[:—1])) + scv[-1]

Listing 5.16 Calcualte V

The perturbation function is the core part of the OC1 method. Calculate different
Gini indices for different combinations of features. We get the combination with the
best Gini index. We fix the previously calculated coefficients as in Listing 5.17.

| def perturb(self, leaf, scv, feature, old_gini):

2 u=[]

3 for element in leaf.elements:

4 u.append(self.compute_u(element, scv, feature))

5 splits = np.sort(np.array(u))

6 am = []
for split in splits:

8 new_scv = SCV

9 new_scv[feature] = split

10 below, above, below_label, above_label = self.
divide_data_hiperplane(leaf, scv)

11 gini = 1 — self.calculate_gini(below_label) — self.calculate_gini

12 (above_label)

13 am.append ([new_scv, ginil)

14 am = np.array(am)

15 best_split_index = np.argmin(am[:,1])

16 if am[best_split_index][1] < old_gini:

17 return am[best_split_index][1], am[best_split_index][0]

18 elif am[best_split_index][1] == old_gini:

19 if random() < 0.3:

20 return am[best_split_index][1], am[best_split_index][0]
21 return old_gini, scv

Listing 5.17 Perturb phase implementation

Choose the one with the lowest gini index value

Compared to C4.5 and CART we have one more variable R, which is a parameter
that is used to set the number of loops to randomly choose the feature to check if a
feature change can give a better split. See build_level in Listing 5.18.
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def build_level (self):

leaf = self.find_current_level_data()
if leaf == None:

return
splits = self.get_all_possible_splits_by_gini(leaf)
split_coefficiency_vector = self.get_coefficiency(splits)
below,above, below_label, above_label = self.divide_data_hiperplane
(1eaf,split_coefficiency_vector)
gini = 1 — self.calculate_gini(below_label) — self.calculate_gini

(above_label)
for ¢ in range(self.R):

feature = randint (0,len(leaf.elements[0])—1)

gini, split_coefficiency_vector=self.perturb(leaf,
split_coefficiency_vector, feature, gini)

below, above, below_label, above_label = self.
divide_data_hiperplane(leaf,split_coefficiency_vector)
left_leaf = Leaf(below, below_label)
right_leaf = Leaf (above, above_label)
leaf.set_completed ()

if len(np.unique(below_label)) == 1:
left_leaf.set_completed ()
if len(np.unique(above_label)) == 1:

right_leaf.set_completed ()
if self.utils.compare_two_leafs(leaf, left_leaf) or self.utils.
compare_two_leafs (leaf ,right_leaf):

leaf.set_completed ()

eiislele

leaf.set_R(right_leaf)

leaf.set_L(left_leaf)
self.build_level ()

Listing 5.18 Building method that combines all presented methods

5.7 Quality Metrics and Tree Pruning

Decision trees can like other methods overfit. Pruning methods can be used to reduce
oravoid overfitting. As explained earlier in this chapter, pruning is one of the tree oper-
ations. Considering pruning operation we should apply Occam’s Razor approach. It
says that everything should be made as simple as possible, but not simpler. In other
words, if we have a tree that is shorter and gives the same error rate as a higher one,
we should keep the shorter one as the more appropriate. We should keep the tree
short to make the training and prediction faster. We can divide pruning methods into
two groups:

e pre-pruning,
e post-pruning.

In [1] both groups are called respectively: direct and validation. Pre-pruning methods
are done within the tree-building process. It means that the method knows more about
the way how the tree is been built. This is why such methods are also called direct.
Execution of such methods takes usually much more time than post-pruning methods.
Post-pruning methods are the opposite of pre-pruning methods. The execution is done
after the tree has been built. This kind of method validates if the tree has been built
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good enough. If not it reduces the number of leafs to make the tree shorter and less
complex.

There are many direct pruning methods [32—41]. We only describe two that are
used in methods that we explained earlier in this chapter. Direct methods are used
during the tree construction. It means we prune the tree during the training phase.
It is more cost efficient than validation methods as we can change/prune the tree
immediately.

Validation methods usually go through the whole tree and calculate some metrics
at each node or level to prune the tree. Examples of validation methods are:

reduced error pruning,
error complexity pruning,
minimum error pruning,
cost-based pruning,

and many more.

Minimum number of objects

In this method of pruning, the minimum number of objects is specified as a threshold
value. Whenever a split is made that yields a child leaf that represents less than
the minimum number from the data set, the parent node and the child node are
compressed to a single node.

x? pruning method
This approach to pruning is to apply a statistical test to the data to determine whether
a split on some feature X is statistically significant, in terms of the effect of the split

on the distribution of classes in the partition on the data induced by the split. We can
perform chi-squared test as

5 Z (observed value — expected value)? . (5.8)

expected value

We reject the split if the feature X, is not related to the classification of the data given
the features.

Reduced error pruning
The reduced error pruning method is the simplest and most understandable method

in decision tree pruning. This method considers each of the decision nodes in the tree
to be candidates for pruning, consisting of removing the subtree rooted at that node,
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making it a leaf node. The available data are divided into three parts: the training
examples, the validation examples used for pruning the tree, and a set of test examples
used to provide an unbiased estimate of accuracy over future unseen examples. If
the error rate of the new tree would be equal to or smaller than that of the original
tree and that subtree contains no subtree with the same property, then the subtree is
replaced by leaf node, which means pruning is done.

Error complexity pruning

In error complexity pruning is concerned with calculating the error cost of a node.
Finds the error complexity at each node. The error cost of the node is calculated
using the following equation:

R(t) =r (1) x p(1), (5.9)
where r () is error rate of a node which is given as

number of misclassified

r(t) =

- - s (5.10)
numer of all objects in node

and p(t) is the probability of occurrence of a node which is given as

) = number of objects in node 5.11)
PR = T umber of all objects '

Additionally, we need to calculate the error cost of subtree 7' of a given node:

R(T) = ZR(i), (5.12)

where i is the number of leaves of the node 7. The error complexity is then calculated

as follows: R() — R(T)
1) — t

1) = 5.13

a(t) number of leaves — 1 ( )

The method consists of the following steps:

a is computed for each node,

the minimum a node is pruned,

the above is repeated and a forest of pruned tree is formed,
the tree with the best accuracy is selected.

bl e
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Chapter 6 ®)
Support Vector Machine oy

Support Vector Machine (SVM) is a classifier that was fully introduced by Vapnik
in [1, 2], however, it was first mentioned in [3]. The standard SVM is a binary linear
classifier, i.e., it can separate the samples from the two classes only and only when
they are linearly separable. SVM tries to find an optimal separating hyperplane. It is
a hyperplane that distinguishes elements of the two different classes in an efficient
way. What exactly we mean by optimal and efficient is described later in this chapter.
The equation describing the hyperplane is calculated using the samples from the
training data set. This means that some noisy samples can affect the result of the
classification. To avoid it, the so-called soft margin approach was proposed by Cortes
and Vapnik in [4]. This approach is presented in one of the sections in the chapter. As
we will see from the next sections the calculation of the separating hyperplane in the
SVM requires solving the convex optimization problem with some constraints. The
solution we use in SVM is based on Lagrange multipliers. A step-by-step explanation
is provided in Sect.6.1.

Several different types of SVM methods exist. In this book, we focus only on the
most popular ones. We explain the common C-SVM and v-SVM in Sect. 6.2 and in
Sect. 6.3.

The real-world problems are usually not linearly separable so this assumption
of the SVM limits its usage. However, the introduction of kernel functions allows
us to move a problem to a higher dimensional feature space in which the problem
can become linearly separable. It is even possible to move the problem to infinite-
dimensional space. Obviously, we should use non-linear mapping which means that
the problem has a non-linear decision boundary in the original space. It is described
in the Sect. 6.4.

The last point that is explained in this chapter is related to some extensions of the
SVM classifier. We present a special type of SVM which can deal with one-class
problems as well. This idea is described in the Sect.6.5. We also show how to use
SVM for one and multiclass problems. We should use some problem decomposition
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166 6 Support Vector Machine

methods to apply the SVM to classify more than two classes. Two simple methods
one-vs-one and one-vs-rest are described in this chapter.

General overview

SVM is a binary classifier, so we consider two classes and to simplify the next
examples, we use a two-dimensional feature space. For now, let us assume that the
problem is linearly separable as shown in Fig. 6.1. The line that distinguishes objects
of both classes can be described by the following equation:

wo + wixy + waxy = 0. (6.1)

It means that if we find such a line then for all objects in the feature space repre-
senting the class marked red on Fig. 6.1 we have

wo + w])cl1 + wzle > 0, (6.2)

and
wy + wlel + wzxgl <0, (6.3)

where all objects representing the blue class we have two features x ' = (x;', x5 1),
and, respectively, for the red objects.

The questions that we can set here are which line of Fig. 6.1 is the best possible?
What does the best possible actually mean? We can draw different lines as shown
in Fig.6.2. Some are better than others. For each of the lines, Egs. 6.2 and 6.3 hold.
We can assume that the best line is the line where we can secure the best accuracy
of the separation of the unseen samples. The line that distinguishes between objects
of two different classes is called a hyperplane. It is a surface that separates between
objects in an n-dimensional feature space. In a two-dimensional space, it would be a

Fig. 6.1 Linear separable
classification problem, where
each object is marked with
red or blue depending on the
assigned class
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Fig. 6.2 A few possible 1
separation options A
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line. We will come back to the definition of the hyperplane later. The hyperplane 4
does not seem to be a good choice since it is very close to red objects. The second
line A, is better; however, it is very close to red objects on one end and close to blue
on the other end. The hyperplane %3 is similar to /,. Using both hyperplanes would
classify more as a blue class on one end and more as a red class on the other end. Our
intuition tells us that the fourth hyperplane /4, which maximizes the distance between
the closest samples of both classes from the separation line, will be the best choice.
We can prove on the basis of the Probability Approximately Correct (PAC) learning
theory [5] that our intuition is good. The last approach which maximizes the distance
between the separating line and the closest samples from both classes, we will call
the maximum-margin approach or less formally the widest street approach because
it leads the widest possible street between the points representing the samples.

Maximum margin approach

Before we start to analyze the problem of how to find the separating line with the
maximum margin, let us try to generalize our task. Instead of considering the two-
dimensional feature space, let us assume that we have p features. For now, we
considered a two-dimensional feature space, but as we know from the previous
chapters, a feature space usually has more than two dimensions. Our hyperplane
will become a subspace of the dimension p — 1 in the feature space which we call a
hyperspace. The equation describing the line changes from 6.1 and our hyperplane
is defined as

U)()+U)1X1 +...,+w,,x,,=0. (64)

Now, this hyperspace divides the feature space into two sub-spaces:

wo +wixy + ..., +wyx, >0 (6.5)
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we assign the label y; = 1 and when:
wo +wixy + ..., +wyx, <0 (6.6)

we assign the label y; = —1. In that way, we separate a p-dimensional feature space
into the two sub-spaces, classifying the points x; as two classes {—1, 1}. This is valid
for a linearly separable case.

Before we look at the problem of finding the hyperplane with the maximum margin
or, in other words, the optimal hyperplane for a given set of feature vectors, let us

look for a more convenient version of Eq.6.4. Assuming that w = (wy, ..., wp),
x = (x1,...,xp) and b = wo we get the following:
wix+b=0. (6.7)

This is a vectorized version of Eq. 6.4. Now, the distance d of the defined hyperspace

from the origin can be given as

b
d=—, (6.8)
[wl]

where ||w]|| means the distance between the hyperplane and the objects. We need
to find those w and b that divide the set of training objects x, ..., x, € R? by the
maximum margin. We assume for now that the problem is linearly separable, so
wTlx; +b > 0 or wlx; +b < 0 for each feature vector from the training set. We
also assume that we pick a hyperplane that is equally distant from the closest feature
vectors that represent the samples of both classes. It means that 3¢ > 0 such that:

wlixi+b>¢ (6.9)

or
wix; +b < —e. (6.10)

In this case, we can demand to choose w such that the constant on the right side

of Egs.6.9 and 6.10 will be equal to 1. It is enough to multiply both sides of the
inequalities by % If we take this assumption, we have the following:

wixi+b>1 (6.11)

and for the feature vectors that lie above the hyperplane, we assign the label y; = 1.
For feature vectors lying under the hyperplane:

wix; +b < —1 (6.12)
we assign the label y; = —1. Multiplying both sides of the above inequalities by y;

we get
yi(wlx; +b) > 1. (6.13)



6 Support Vector Machine 169

Fig. 6.3 SVM hyperplane
with margins

Based on that for all closest positive and negative feature vectors the inequalities
6.11 and 6.12 become
wix! +b=1 (6.14)

for positive feature vectors and
wlx 7 +b=-1 (6.15)

for negative feature vectors. The hyperplane margins are defined by the following
equations:
wix! +b—1=0 (6.16)

and
wix7'+b+1=0. (6.17)

We can draw it as shown in Fig. 6.3 where the dashed lines are the margin hyperplanes
given with Eqgs. 6.16 and 6.17. The goal of the SVM method is to find a hyperplane
that divides the feature space with the biggest margin between support vectors. The
support vectors are the elements in the feature space that are closest to the hyperplane.
The black straight line is the hyperplane g(x). The hyperplane presented as the
straight black line is defined as follows:

gx) =wlx +wy=0. (6.18)

The two dashed lines are the margins. The margines are built using the support
vectors. Here is where the name of the method came from. The distance d between
them can be calculated by the difference of the distances d; and d, (dashed lines)
where d; is the distance of the positive margin hyperplane from the origin (solid line)
and d, is the distance of the negative margin hyperplane from the origin. Remember
that these hyperplanes are parallel, so using Eq. 6.8 we get
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b—1 b+1 2
d=|dy—dy| =| - | = : (6.19)
[wll  [w]] [wl]

It means that the maximum margin between the feature vectors we get when we

maximize the expression ﬁ or minimize the expression w However, sometimes

it is more convenient to minimize the following:
lllwllz. (6.20)
2
It is a quadratic optimization problem. We cannot forget about the constraints:
yiwlxi+b)—1>0,i=1,...,n. (6.21)

At this point, we could stop our considerations and we could calculate the values of
w and b which minimize the formula 6.19. Next, we can easily classify a new object
by calculating the value of w”x + b and if it is greater than zero, we classify it as
class 1 and as class —1 in the opposite case.

6.1 Lagrangian Multipliers

In the previous chapter, we conclude that we have to solve a quadratic optimization
problem with constraints to find an optimal separating hyperplane. What does it
mean? Let us look at Fig.6.4. On the left, we have to find the minimum of the
function x> without any constraints. The solution is x = 0, on the right we have the
same minimization problem, but with constraints x > 1, now the answer changes,
and the minimum of the function is x = 1. This problem is very simple, as it contains

10 10
0 0
4 2 0 2 4 4 2 0 2 4
X X

(a) A function without constraints b) A function with a constraint
1

(
X =

Fig. 6.4 Example of the minimization problem of x2 function
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only a function with one variable. A function with multiple variables is much more
difficult to solve. Let us assume that we have to minimize the function f(x) with the
constraint g(x) = 0, where x might be a vector of variables x = (xy, ..., x,). We
can notice that the minimum of the f(x) is found when the gradients of these two
functions are parallel, i.e.,

Vfx)=aVgx), (6.22)

where « is the scaling factor, we call it the Lagrange multiplier. To find the minimum
of f under the constraint g, we just need to solve the following:

Vfx)—aVgx)=0. (6.23)

To solve that equation, we can define a function L(x, o) = f(x) — ag(x), then its
gradient is VL(x, «) = V f(x) —aVg(x). Solving VL(x, ) = 0 allows us to find
the minimum. The function L(x, o) we call Lagrangian.

Let us take an example to understand how it is used to solve the problem defined
in Eqs. 6.23. Assume that we have to find the minimum function f(x, y) = x2 4 y?
under the constraint g(x, y) = x +y — 1 = 0. In our case, the Lagrangian is defined
as follows:

L(x,y,a) :x2+y2—a(x+y— 1).

Now, we have to calculate when the gradient of this function equals zero, which
means solving the following system of equations:

ad
—L(x,y,0)=2x—a=0
ax

0
—Lx,y,a) =2y —a =0
dy

a
—L(x,y,0)=—x—y+1=0
ol
We calculate the derivative of each variable in each equation separately. Finally, we
get the answers as: x = %, y= % and o = 1. This means that the function f(x, y) =

x? + y? has the minimumin f(§, ) =1+ 1 =1.

Lagrangian multipliers for multiple constraints

Lagrange multipliers also work with multiple constraints. We are just adding
another boundary to the problem. When we deal with multiple constraints, then
our Lagrangian becomes
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L(x,@) = f(x) = ) a;gi(x), (6.24)

where g;(x) = Ofori = 1, ..., n are the constraints. Notice that each constraint has
its own Lagrange multiplier. The Lagrangian is equal to 0O:

VL(x,a) =0. (6.25)
Solving this case is not much different compared to a single constraint case. However,
when we are looking for optimal hyperplanes, then our constraints are inequalities.
The constraints are handled by the Lagrange multipliers, but the following equations

should be met when dealing with the inequality constraints:

g(x) >0, then « >0
g(x) <0, then ¢ <0

Example 1 (Lagrangian multipliers with two constraints) Let us take an example
of a function with two constraints. The function is defined as follows:

flay) =207 =3y°
and the constraints are defined as
gi(x,y) =x*—4>0,
and
&k, y)=y+1=0.
Based on the previous example, we can set our Langrangian as
L(x,y, a1, 0) =2x* —=3y* —a;(x* —4) —ay(y — 1).

All derivatives should be zero and we get a system of equations as

0
—L(x,y,a) =4x —2xa; =0,
0x

0
—L(x,y,a0) = —6y —2yay =0,
dy
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0
—L(x,y,a) = xr—4=0,
80[1

ad
—L(x,y,0)=y+1=0.
8a2

We also have additional constraints:

a; >0,

oy > 0.

The above equations give as the values of y, x, o) and «;:

y=-1
x =2,
ap =2,
ar =3

Finally, we find that the minimum of the function f(x, y) in (—1, 2) is equal to:
flx,y)=2-22-3.(=1) =11.
To summarize this section, we have learned how to use Lagrangian multipliers to
solve a function with more than one constraint.
Applying multipliers to SVM

Let us go back to our problem of maximizing the margin between the hyperplanes.
We concluded that it is enough to find the minimum for the function:

1 2
fw) = Slwll", (6.26)

with the constraints:
gw,b)=y;(wlxi+b)—1>0,i=1,...,n. (6.27)

As shown in the previous section, it can be solved by the Lagrangian multiplier
method. This method allows us to formulate the so-called dual problem in which we
can get rid of all the constraints. The dual problem is just a different way of solving
the primal problem. Not to go much into the details, in case of Lagrangian multipliers
to move to a dual problem, the Karush-Kuhn-Tucker conditions [6] need to be met.
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In other words, a solution of the dual problem is also the solution of our primal
problem. In order to get the dual problem we introduce «; > 0 Lagrange multipliers
and add our constraints into the formula. So, now we get

1
L(w,b,a) = 5||w||2—2ai<yi<wai+b>— D. (6.28)
We can rewrite the above equation as follows:
1
L(w,b,a) = 5||w||2—lZa,-y,~<wa,~+b)—lZai. (6.29)

‘We would like to find w and b that minimizes, and the «; which maximizes our
equation. We can do this by differentiating L(w;a) with respect to w and b and
setting the derivatives to zero, that is

SL(w, b,
% —w— Y iy =0, (6.30)
and 5L b
M__Zalyl _0 (6.31)
which means
w = Zai ViXi, (6.32)
and
Y iy =0. (6.33)
We should also have
D ai((woxi — bo)yi — 1) = 0. (6.34)

We know that Y «;y; = 0. If we replace w and b in 6.29 by 6.32 and 6.33 then we

get
L= a- %(Za,-y,-x,-)(Zaiyixo, (6.35)

which is equivalent to:

L(a) = Za,——ZZaajy,ij Xj. (6.36)

So finally our task is to find o for which L(«) is maximal, of course under the
following constraints:
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>0 i=12....n and Y a;y =0. (6.37)
Assume that the vector o«® = (&¥, a9, ..., a?) is the solution of our optimization
problem with our constraints, then hyperplane is defined by w’x” + b where

w’ =Y yialx, (6.38)

summed over all support vectors, and
B = L 0 6.3
_E(w X +wx;), (6.39)

where i # j are two indices of the support vectors. Instead of using an arbitrary
Support Vector xy, it is better to take the average over all of the Support Vectors:

= NL Z(ys - Za,-y,-xisz). (6.40)

It is time when we can formulate some conclusions. First, we see that if the vector
is not a support vector, i.e., it is not lying on the margin then the corresponding
Lagrange multiplier o; must be zero. Second, we use only the support vectors to find
the optimal solution for our problem, we need only the dot product of the support
vectors.

Finally, we are able to rewrite our decision function using the Lagrange multipliers
and the support vectors as

£ =sign(Y_ yia) (x] x) + b°). 6.41)

The decision function is a sign function where the major part of the decision is made
based on the weights.

6.2 C-SVM

The presented solution is very intuitive and it performs well, but only if a separating
hyperplane exists, i.e., the problem is linearly separable. However, in many cases,
there is no separate hyperplane and, therefore, the solution of the optimization prob-
lem has no solution with margind (h, h,) > 0. However, in this section, we describe
the concept of a semi-separating hyperplane which almost separates the classes (with
some errors), using the so-called soft margins.

Sometimes, the strict approach to maximization of the margin is not optimal.
We see it in Fig.6.5. The separation hyperplane exists, we can use our algorithm
to maximize the margin, and we find the optimal separating hyperplane #; which
separates all samples from both classes. However, if we look closer at the solution,
we see that such a classifier is probably not a good solution. It will probably not
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0 02 04 06 08 1
(c) C=1000

Fig. 6.5 A hyperplane with small (a), big (b), and intermediate value of C

generalize well. We would prefer the hyperplane /,, which misclassifies one sample
but allows us to find a hyperplane with a much larger margin.

This example is very important to show that the pure maximum-margin classifier
is very sensitive to single-outlying observations. We already see that every change
of the support vector impacts the separating hyperplane but now see that if we add
even an outlying sample, then our solution will change drastically and it can even
become unseparable. The problem can be solved by allowing one to misclassify some
training samples in order to achieve better accuracy in classifying the test samples.

This approach is a soft margin approach. Rather than seeking the largest possible
margin so that every observation is not only on the correct side of the hyperplane
but also on the correct side of the margin, we instead allow some observations to be
on the incorrect side of the margin, or even the incorrect side of the hyperplane. We
call the margin soft because it can be violated by some of the training samples. An
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example is shown in Fig. 6.5a, b. Most of the observations are on the correct side of
the margin. However, a small subset of the observations are on the wrong side of the
margin.

A sample can be not only on the wrong side of the margin, but also on the wrong
side of the hyperplane. In fact, when there is no separate hyperplane, such a situation
isinevitable. Observations on the wrong side of the hyperplane correspond to training
observations that are misclassified by the support vector classifier. The right-hand
panel of Figure XX illustrates such a scenario.

How to describe this mathematically? We can modify the conditions 6.11 and
6.12 which now became

wixi+b<—1+¢ (6.42)
and
yiw'xi +b)>1-§&, (6.43)
where
£E>0,i=1,2,...,n. (6.44)

The &; are slack variables that allow some individual samples to be on the wrong side
of the margin or the hyperplane. Well, but what are these slack variables? Generally,
they tell us where the i-th sample is in the feature space relative to the hyperplane
we are looking for. Also, it tells us where this sample is relative to the margin. There
are four possible cases:

e & = 0 the sample is on the correct side of the hyperplane and on the correct side
of the margin,

e & > 0 and & < 1 the sample is on the correct side of the hyperplane, but it lies
inside the margin,

e & = 1 the sample lies just on the separation hyperplane,

e £ > 1 the sample lies on the wrong side of the hyperplane.

The second case does not cause a classification error when the third and fourth
lead to misclassification. We can differ the approach to them, but it is more practical
not to. Now, let us introduce an additional parameter C, which will be the sum of all
&;’s, so it will determine the sum of violations in the margin and the hyperplane. It
means that we will tolerate the total weight of the violations (but no more than C),
to find a better hyperplane, i.e., with a better margin.

We can think of C as a trade-off between the width of the margin and the cost of all
the violations caused by the samples in n. We can demand C = 0, which means that
we do not allow any sample from the training data set to be misclassified. However,
we risk finding the solution with a very small margin, or even we will not be able
to separate our samples. If we allow C > 0, then we allow some samples to lie in
the margin or even be misclassified, resulting in a wider margin or even making our
problem separable. The higher the value of C, we get a more general solution but
at the cost of increasing the error rate. The choice of the value of C is not a trivial
problem; we will return to it later in this chapter.
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We have our modified conditions, and now the function which we should minimize
becomes:

1
SIKIP+Cy & (6.45)

with constraints
£§>0 and » &<C.C>0 (6.46)

As mentioned we can use Lagrangian multipliers and introduce the dual problem
which becomes

1
L(a):Zai — EZaiajyiyj(xiT—l—xj) (6.47)
with constraints:
C>w;>0,i=1,....,n and Zaiy,»=0 (6.48)

We can also notice something very interesting. Using KKT conditions, we get the
following:

o0 =0= y;(wlx; +b)>1 (6.49)
o =C=y(wlx+b)<1 (6.50)
O<o; <C=ywx+b)=1 (6.51)

Our new optimization problem has a very interesting property: it turns out that only
those samples that either lie on the margin or violate the margin will affect the
separating hyperplane. This means that samples that lie on the correct side of the
margin do not affect our classifier. So, we change the classifier only if we add the
sample that violates the margin! It also means that not only the samples that lie
directly on the margin become the support vectors; now even the samples on the
wrong side of the margin for their class become support vectors.

The fact that only support vectors affect the classifier is quite understandable,
and we see that C controls the trade-off between the margin and the bias caused by
the misclassified samples. When the C parameter is large, the margin is wide, many
samples violate the margin, and so there are many support vectors. In this case, many
samples are used to calculate the separating hyperplane.
def train(train_data_set, train_labels, kernel_type=’linear’, C=10,

threshold=1e—5):
kernel = build_kernel(train_data_set, kernel_type=kernel_type)

P = train_labels * train_labels.transpose() * kernel

q = —np.ones((objects_count, 1))

G = np.concatenate ((np.eye(objects_count), —np.eye(objects_count)))
h = np.concatenate((C % np.ones((objects_count, 1)), np.zeros
((objects_count, 1))))

A train_labels.reshape(l, objects_count)

A.astype(float)
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b = 0.0

sol = cvxopt.solvers.qp(cvxopt.matrix(P), cvxopt.matrix(q), cvxopt.
matrix(G), cvxopt.matrix(h), cvxopt.matrix(A), cvxopt.matrix(b))

lambdas = np.array(sol[’x’])

support_vectors_id = np.where(lambdas > threshold) [0]
vector_number = len(support_vectors_id)
support_vectors = train_data_set[support_vectors_id, |

lambdas = lambdas [support_vectors_id]
targets = train_labels[support_vectors_id]

b = np.sum(targets)
for n in range(vector_number):
b —= np.sum(lambdas * targets * np.reshape(kernel
[support_vectors_id[n], support_vectors_id], (vector_number, 1)))
b /= len(lambdas)

return lambdas, support_vectors, support_vectors_id, b, targets,
vector_number

Listing 6.1 C-SVM training method

In Listing 6.1 we have combined all the above and implemented the training part.
We use the cvxopt library that is a linear programming library in Python. The n is the
sample number, b is the bias as a 1 x 1 matrix, A is the y vector, Pis H = X'X T
G is a diagonal matrix of —1s of size m x m, h is a vector of size 1 x m, and q is
a vector of size 1 x n of —1. The solver of the equations can be invoked as line 16.
The x values are saved in the lambdas.

def classify_linear(test_data_set, train_data_set, lambdas, targets, b,

vector_number , support_vectors, support_vectors_id):
kernel = build_kernel (train_data_set)
y = np.zeros((np.shape(test_data_set)[0], 1))
for j in range(np.shape(test_data_set) [0]):

for i in range(vector_number):

y[j] += lambdas[i] * targets[i] = kernell[j, il

y[jl += b

return np.sign(y)

Listing 6.2 Linear classification

The SVM is by default a linear classifier. In Listing 6.2 we use the linear kernel
that is defined as
K=XxxT. (6.52)

The linear kernel in many cases is not the best-performing kernel. To show it we
prepared an example on a classical data set below.

Example 2 (Iris classified using linear kernel C-SVM) This example is only used to
show how to use C-SVM using one of the simplest kernels. In Listing 6.3 we show
how to prepare the Iris data and choose only the objects of two classes. In lines 9—10
we drop the object of class 2. What is more, the labels are changed from 0 and 1 to
—1 and 1, this is a requirement of the cvxopt library.

from sklearn.datasets import load_iris

import numpy as np
from sklearn.model_selection import train_test_split
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iris = load_iris ()
data_set = iris.data
labels = iris.target

data_set = data_set[labels!=2]
labels = labels[labels!=2]

train_data_set, test_data_set, train_labels, test_labels =
train_test_split(data_set, labels, test_size=0.2, random_state=15)

train_labels[train_labels<1] = —1
test_labels[test_labels<1] = —1
objects_count = len(train_labels)

lambdas, support_vectors, support_vectors_id, b, targets, vector_number =
train(train_data_set, train_labels, kernel_type=’linear’)

predicted = classify_linear(test_data_set, train_data_set, lambdas,
targets, b, vector_number, support_vectors, support_vectors_id)

predicted = list(predicted.astype(int))

Listing 6.3 Invoke the main SVM prediction method

The predicted values are then converted into an integer with a value of —1 or 1.

6.3 v-SVM

The soft margin classifier is a very flexible approach, allowing us to soften the criteria
of separating hyperplanes. We see that the higher the value of C, the more support
vectors we have. However, we have no direct influence on this number. So we can
propose another realization of the soft margins called v-parameterization [7]. The
parameter C is replaced by a parameter v € [0, 1], which is the lower and upper
bound of the number of examples that are support vectors and are on the wrong side
of the hyperplane.
The primal problem in this approach will be formulated as follows:

1 1
Sl —vp+ 23 & (6.53)

subject to:
yiw'x)+b=p—&, i=1,....n and §>0, p>0 (6.54)

Now, we have no constant C appearing in the formula. It has been replaced by

a parameter v and an additional variable p to optimize. Note that for & = 0 our
constraint states that the two classes are separated by a margin equal to ”zw—pH.

To explain what is the parameter v, let us introduce the term margin error R. We
denote training points by & > 0 as the points that are errors or are within the margin.
Formally, the fraction of margin errors is the following:
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| -
Ry (w. b) = —Wilyi(w xi +b) < p}I. (6.55)

Now, let us assume that we run v-SVM with kernel function k; on some data and
we get some p > 0, then:

e v is an upper bound of the fraction of margin errors, and hence also on the fraction
of training errors,
e v is a lower bound on the fraction of support vectors.

Let us examine the dual problem for the v-SVM algorithm. Our Lagrangian will
be in the form:

L= %Hw”2 —vp + %Z& =) (i xi +b) — p + &) + Bi&i = 5p).
(6.56)
where «;, B;, 6 are the multipliers. If we compute the partial derivatives from the
KKT conditions and set them to 0 we obtain the following conditions:

w = Zaiy;xi, (6.57)
1

o + i = —, (6.58)
n

> ey =0, (6.59)

Za,- —8=v. (6.60)

Substituting above into L; using «;, B;, § and incorporating kernels for dot prod-
ucts leaves us with the following quadratic optimization problem for nu-SVM clas-
sification:

1
L(o) = —Ezzaiajyiyjk(xi,xj), 6.61)

subject to:
O0<o; <1/n (6.62)
>y =0 (6.63)
Zai > (6.64)

As above, the resulting decision function can be shown to take the form:

fx) =sign()_ ryik(x, x;) + b) (6.65)
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Compared to the C-SVM dual problem, there are two differences. First, there is an
additional constraint. Second, the linear term ) _ ¢; no longer appears in the objective
function. This has an interesting consequence: it is straightforward to verify that the
same decision function is obtained if we start with the primal function:

§||w||2+0(—vp+ 1/n)_ &) (6.66)

In this, we see the connection between C and v.

A connection to standard SVM classification and a somewhat surprising inter-
pretation of the regularization parameter C is described by the following result. If
v-SVM classification leads to p > 0 then C-SVM classification, with C set a priori
to % leads to the same decision function.

6.4 Non-linearly Separable Problems

The proposed solution is much better and allows us to solve many more problems. We
do not demand that the problem be strictly linearly separable. Using the parameter
C, we can loosen up the rules to find a better solution. However, in practice, we
sometimes have problems that are completely non-linear. For instance, consider the
feature space presented in Fig. 6.6a. It is clear that it is not linearly separable. If we
try to use our first approach, we will not find any separating hyperplane. No matter
what the value of C is, the separation hyperplane will not improve.

The problem is that we are looking for a linear boundary when the boundary in
our space is non-linear. However, it does not mean that there is no space in which
this problem has no linear boundary. If we find the mapping to such a space, the
problem can be solved. Let us consider a very simple example in R%. Assume that

A
A A R
0.5 -
A u [ 1
A ™ A
)
m Em
n 0.5
—0.5 A
A A 0 0.5
4 -05 0
-1 -05 0 0.5 1 0.5 05
X x
(a) Linear non-separable in two- (b) Linear separable in three-
dimensional feature space dimensional feature space

Fig. 6.6 Kernel trick
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we have 4 training samples: (—1, —1), (1, 1) representing class —1 and (—1, 1),
1, —1) representing class 1. It is a typical XOR problem that is not linearly separable
in R%.

The question is if we can map the feature space into more dimensions in such a
way that the problem can be linearly separable. It is quite obvious that if we use the
function:

D(x) = (12, v/ Q)x1x2, x2) (6.67)

we transfer our problem into R® space in which it is linearly separable. It is visible
because our training points in R? become: ®(—1, —1) = (1, /(2), 1), ®(1,1) =
(1,/(2), 1) and ®(—1,1) = (1, —/(2), 1), ®(1, —1) = (1, =/(2), 1). It seems
troublesome to search for such a space and move each vector into it. In particular,
this space can be much more dimensional. However, if we look at 1.30 we see that all
we need to calculate is the dot product between @ (x;)® (x;) = (x;x j)2 in our case.

This means that we do not have to calculate ®(x), we also do not have to know
the form of the ® (x), what we really need is to know how to calculate the dot product
in the new space. In fact, if we define the dot product as ® (x;) @ (x;) = (x;x j)z then
the ®(x) is not unique. It can also be defined as ®(x) = (xll, X1X2, X1X2, x%) , which
means that we are in the R* space.

Every time the inner product appears in the formula 1.30, or in a calculation of
the decision function so we can replace it with a generalization of the inner product
of the form

K(xi, xp) =Y ®(x)P(x;) (6.68)

K is the function that we will refer to as a kernel. A kernel is a kernel function that
quantifies the similarity of two samples. For instance, we could simply take

K(xi,xp) =) xukji (6.69)

It just gives us the normal support vector classifier in which we stay in the feature
space. It is known as a linear kernel because the support vector classifier is linear in
the features. Generally, the linear kernel essentially quantifies the similarity of a pair
of observations using Pearson correlation.

However, we can take the kernel function as follows:

K(xi,xp) = O xuxj +a)'. (6.70)

It is a polynomial kernel of degree d, where d is a positive integer. Using such
a kernel with d > 1, instead of the standard linear kernel, leads to a much more
flexible decision boundary. Basically, it amounts to fitting a support vector classifier
in a higher dimensional space involving polynomials of degree d, rather than in
the original feature space. When the support vector classifier is combined with a
non-linear kernel, the decision function is non-linear and has the form:
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) =B+ Y K (x,xp). (6.71)
Another popular choice is the radial kernel, which takes the form:
K (xi, x;) = exp(=y||xi — x;1). (6.72)

Using this kernel, we go to the infinite-dimensional feature space. It would not be
very easy to work with ®(x) explicitly. However, if we replace x;x; by K (x;, x;)
everywhere in the training algorithm, the algorithm will get a support vector machine
which lives in an infinite-dimensional space and will do so in roughly the same
amount of time as it would take to train on the unmapped data. The four most
popular kernel functions are:

e the linear kernel,
e the polynomial kernel, defined as

(y - {xi,x;) + 1), (6.73)
e the radial basis function (RBF) kernel, defined as
exp(—y - [xi — x;1%), (6.74)
e the sigmoid kernel, defined as
tanh({((x;, x;) +71). (6.75)

We have one big advantage of using kernel rather than simply enlarging the feature
space using functions of the original features. One advantage is computational, which
is equivalent to the fact that, using kernels, one only needs to compute K (x;, x;) for
all n(n — 1) pairs of i and j. This can be done without explicitly working in the
enlarged feature space. This is important because in many applications of SVMs, the
enlarged feature space is so large that computations are intractable. For some kernels,
such as the radial kernel, the feature space is implicit and infinite dimensional, so we
could never do the computations there anyway!

Example 3 (SVM Radial Basis Function (RBF) kernel used on the Iris data set) The
previous example performs rather poorly. To make the prediction more successful,
we use a more sophisticated kernel. One of such a scheme is the RBF kernel. In
Listing 6.4, we implement Eq. 6.74.

| def build_kernel(data_set, kernel_type=’linear’):
2 kernel = np.dot(data_set, data_set.T)
if kernel_type == ’rbf’:
sigma = 1.0
objects_count = len(data_set)
6 b = np.ones((len(data_set), 1))
7 kernel —= 0.5 % (np.dot((np.diag(kernel)s*np.ones((1, objects_count
))).T, b.T)
8 + np.dot (b, (np.diag(kernel) * np.ones
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((1, objects_count))).T.T))
kernel = np.exp(kernel / (2. % sigma *xx 2))
return kernel

Listing 6.4 RBF kernel implementation

The implementation of the classification method is slightly different and needs to
be adjusted to use the RBF to predict the label.

def classify_rbf(test_data_set, train_data_set, lambdas, targets, b,
vector_number , support_vectors, support_vectors_id):
kernel = np.dot(test_data_set, support_vectors.T)
sigma = 1.0
c = (1. / sigma % np.sum(test_data_set % 2, axis=1) % np.ones((1, np.
shape(test_data_set) [0]))).T
¢ = np.dot(c, np.ones((1, np.shape(kernel) [1])))
sv = (np.diag(np.dot(train_data_set, train_data_set.T))#*np.ones((1,len
(train_data_set)))).T[support_vectors_id]
aa = np.dot(sv,np.ones((1,np.shape(kernel) [0]))).T
kernel kernel — 0.5 * ¢ — 0.5 * aa
kernel np.exp(kernel / (2. % sigma %% 2))

y = np.zeros((np.shape(test_data_set) [0], 1))
for j in range(np.shape(test_data_set) [0]):
for i in range(vector_number):
y[jl] += lambdas[i] % targets[i] * kermnell[j, il
y[jl += b
return np.sign(y)

Listing 6.5 Implementation of C-SVM for the RBF kernel

The execution is done in the same way as in the linear example. The accuracy is
significantly higher and easily achieved 85%.

6.5 Extensions

So far, our discussion has been limited to the case of binary classification, that is,
classification in the two-class setting. How can we extend SVMs to the more general
case where we have some arbitrary number of classes? It turns out that the concept
of separating hyperplanes upon which SVMs are based does not lend itself naturally
to more than two classes. Although a number of proposals for extending SVMs to
the K-class case have been made, the two most popular are the one-versus-one and
one-versus-all approaches. We briefly discuss those two approaches here.

One class SVM

In the previous section, we addressed multiclass problems which seem to be typical
for most real-world problems. However, sometimes we are interested in one class
only. We just want to separate the samples from all the others. It seems like a typical
two-class problem (in fact, we even use such an approach in the one-versus-all
strategy). However, what happens when we have training samples that represent one
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Fig. 6.7 One class example. 1
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class only? Can we train a classifier that learns to recognize the samples in this class
and which will reject all others?

The basic idea is to enclose the data with a hypersphere and classify the new data
as normal if they fall within the hypersphere and otherwise as anomalous data (see
Fig.6.7).

Let us assume that we have a training data set 7 with samples T = {xy, xo, ...,
X} € RP and let r be the radius of the hypersphere and ¢ € R” be the center of this
hypersphere. To find the minimum enclosing the hypersphere, we have to minimize
r? subject to:

@) —cl><r? i=1,....p (6.76)
Then we introduce the Lagrangian multiplier for each constraint and obtain
Lera)=r"+ Y all®G) —cllP =r?), >0 (6.77)

As we remember from the previous section, both derivatives must be equal to zero
)

%Cr,a) =2 E i (P(x;)—c)=0 (6.78)
and SL( )
c,r,o

— = 2r(1 — E a;)=0 (6.79)

from above we get

da)=1 and c=» o;®(x). (6.80)
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according to that we get the dual form:

W) =Y a)l|®x) —cll’ =D aik(xi, x) — Y Y ajark(xi, x;) (6.81)

Therefore, we have to maximize W («) subject to:

Yoap=1, i=1....p (6.82)

Similarly as in standard two-class SVM ¢; > 0 only if the corresponding sample x;
lies on the separating hypersphere. Now, if we look at the decision function, it has
the following form:

fx) = sign(r? — | @) —cl)), (6.83)

and finally we get

f(x) =sign(r® — (k(x, x) — ZZaik(x, X))+ Z Zaiajk(xi, xj)). (6.84)

If we have some noise in our training set, the hard enclosing hypersphere approach
may force a larger radius than should really be needed. In other words, the solution
would not be robust.
Our goal now is to find the minimum enclosing hypersphere that contains (almost)
all training examples, but not some small portion of extreme training examples.
We can use the same trick with the soft margins as with the hyperplane, so we

introduce slack variables & > 0,i = 1, ..., p and we have to minimize
rP+CY (6.85)
subject to
o) —cll* <r*+&, &>0, i=1,....p (6.86)

which finally leads to minimizing:

DO oK (xixp) — Y aik(xi,x;) (6.87)

subject to
0<w <C, Zaizl. (6.88)

One-Versus-One and One-Versus-All Classification
Suppose that we would like to perform classification using SVMs, and there are

K > 2classes. A one-versus-one or all-pair approach constructs W SVMs, each
of which compares a pair of classes. For example, such an SVM might compare the



188 6 Support Vector Machine

k-th class, coded as +1, to the k-th class, coded as — 1. We classify a test observation
using each of the w classifiers and tally the number of times the test observation
is assigned to each of the K classes. The final classification is performed by assigning
the test observation to the class to which it was assigned the most frequently in these
pairwise classifications.

The one-versus-all approach is an alternative procedure for applying SVMs one-
versus in the case of k > 2 classes. We fit the k SVMs, each time comparing one of
all K classes with the remaining k — 1 classes.
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Chapter 7 ®)
Ensemble Methods G

Ensemble methods are also known as combined classifiers and are a group of methods
that combine more than just one classifier to get better results than each classifier
on its own. The classifiers are built on the same data sets. Depending on the way an
ensemble method is built, we have a few major types:

e boosting,
e bagging,
e stacking.

A comparison of one classifier against many classifiers is given in Fig.7.1.

As shown in the figure, collecting many poor classifiers into one ensemble clas-
sifier can result in a classifier that performs well. A general formula of ensemble
methods looks like following:

T
C(X) = ZwiCi(X). (7.1)

i=1

It’s important to mention that combining identical classifiers is useless, because
same classifier will result with same boundaries. By same classifier we mean not
exactly the same classification method, but the model that is trained using the same
classification method, parameters, and exact training data. In other words, we need
many low-quality classifiers and a way to combine them together, so we get a classifier
that perform very well. In a classification problem, the low-quality classifiers needs
to be better than guessing. It means that for a binary classification problem we should
achieve more than 50%.

In this part, we cover the most popular types of ensemble methods and include
the implementations of random forest. XGBoost is another bagging method that is a
popular Kaggle winning method. In this chapter, we explain the method in details.
We cover also AdaBoost that is a bagging method and grading that is a stacking
methods.
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Fig. 7.1 Each classifier
discriminant boundary is A
marked with black. Only
together we can distinguish
between the red and blue
objects fully

Boosting methods [1] take a different weighting schema of resampling than bag-
ging. The component classifiers are built sequentially, and examples that are misclas-
sified by previous components are chosen more often than those that are correctly
classified. New classifiers are influenced by performance of previously built ones.
The new classifier is encouraged to become an expert for instances classified incor-
rectly by the earlier classifier. There are few methods of boosting type:

AdaBoost,
Arcing,
RegionBoost,
Stumping.

The differences are minor and most boosting methods are a modification of AdaBoost.
Stumping differs from other ones, because it is used in decision trees. RegionBoost
uses the kNN method as a part of the algorithm.

7.1 AdaBoost

AdaBoost [2] is the most popular boosting method and stands for adaptive boost. We
use the weights to set the importance of the objects. The more important an object
is, the more frequently it is chosen in the training data set. The method consists of
the following steps:

1. initialize weights to %, where N is the number of data points,

2. loop steps below until
1

& < 2 (7.2)
or maximum number of iteration is reached,
3. train classifier on S, w® and get a hypothesis %, (x,) for datapoints x,,,
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4. compute error

N
e = w I (v # hi(x)), (7.3)
n=1

5. set
1—¢

o; = log( ), (7.4)

&

6. update weights:

L0 _ Wi expard O # i ()

7.5
b 72 7.5)

where Z, is a normalization constant,
7. output

T
fX) =sign(Y_ arhy(x)). (7.6)

t=1

The weights are set in each loop, where in each loop, we add a new classifier with
the current weights and data set. It can be drawn as in Fig.7.2. We use the same
data set example as for decision trees. In the first step, we have the data set with
similar weights. Based on the prediction of the first model, we know what objects
are misclassified. In the second step, the weights are higher for the misclassified
ones. In the Fig. 7.2, we see it as bigger objects. In the first iterations, we will have
more of such objects, and during the next iterations, the number of objects that are
misclassified should decrease.
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X X X
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8 x x 8
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o
x X
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0 ° 0
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Fig. 7.2 Two first steps of AdaBoost method
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The implementation consists of five methods. We use a decision tree method
scikit-learn implementation for the training. It is easy to train with the £it method,
most scikit-learn classifiers are trained with the £1t. It makes usage a bit simpler.
In Listing 7.1, an example of a decision tree training using a set of weights is shown.

def train_model(classifier, weights):
return classifier.fit(X=test_set, y=test_labels, sample_weight=weights

)
Listing 7.1 Model training

The error calculation is based on the output of the predict method that is next
used to calculate the error rate (7.3). It uses the weights and the accuracy vector that
checks the returns the predictions test vector. The vector consists of binary values: 0
for a positive prediction and 1 if the classifier did not correctly predict the label.

def calculate_accuracy_vector (predicted, labels):
result = []
for i in range(len(predicted)):
if predicted[i] == labels[il:
result.append (0)
else:
result.append (1)
return result

def calculate_error(weights, model):
predicted = model.predict(test_set)
return np.dot(weights,calculate_accuracy_vector (predicted, test_labels

))

Listing 7.2 Error rate calculation

The calculate_accuracy_vector () method loops over the predicted
labels and compares it to the test labels. The variable « uses the error rate (lines
1-2, and 4).

The new weights are the most important part of the algorithm. We used the old
weights and adjusted them and changed the weight value of the wrong-predicted
objects. In the second line of the Listing 7.3, we get the fraction counter of the
Eq.7.5.

def set_alpha(error_rate):
return np.log((l—error_rate)/error_rate)

def set_new_weights(old_weights, alpha, model):
new_weights = old_weights % np.exp(np.multiply(alpha,
calculate_accuracy_vector (model.predict(test_set), test_labels)))
Zt = np.sum(new_weights)
return new_weights / Zt

Listing 7.3 New weights calculation function

We save the alphas and models that are used during the training to compare how
it changed. After the weights are changed, the new prediction can be performed. In
the following example, we show how it works on the classic wine data set.

Example 1 (Boosting the wine) In the first step, we load the data set from the scikit-
learn data sets library as shown in Listing 7.4. The set is then divided into training
and testing sets by choosing 140 random objects from the set.
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from sklearn.

import numpy
from sklearn
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datasets
as np

import load_wine

.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

wine = load_wine ()

random_objects = np.random.randint (0, 178, size=140)

data_set = wine.data[random_objects]

labels = wine.target[random_objects]

train_set, test_set, train_labels, test_labels = train_test_split(data_set
, labels, test_size=0.5, random_state=42)

Listing 7.4 Adaboost prediction of wine dataset

In the next step, we run the classifier and iterate by adjusting the weights. The
implementation is shown in the Listing 7.5. First, the model is trained with the same
weights for each object, next the error rate is calculated. Based on the error rate, the
new weights are calculated. The ones that were misclassified get a higher weight.

classifier.fit(X=train_set, y=train_labels)

alphas = []

classifiers = []

for iteration in range (number_of_iterations):
model = train_model(classifier, weights)
error_rate = calculate_error(weights, model)
alpha = set_alpha(error_rate)
weights = set_new_weights(weights,
alphas.append (alpha)
classifiers.append(model)

alpha, model)

Listing 7.5 Adaboost weights adjustment

Finally, we get a classifier that achieves better results. The weights of the data set
before and after the weight changes are shown in Fig.7.3. We can see that objects
in some areas are harder to assign to the proper class. The plot is two-dimensional
even if there are more features in the data set.
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Fig. 7.3 Wine classification of testing set (a) and weighted testing set (b)
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Other boosting methods

Arcing is a modified AdaBoost, it differs how it calculates the error:

A+ T # hi(x))
Z, ’

Eqvn () = (7.7)

We use the normalization constant Z; to obtain a probability density. Finally, we vote
for the label:

T
F(X) = argmax 3 (fi(X) = y). (78)

The arcing weight function can be implemented similarly to the AdaBoost weight
function (Listing 7.6).
def set_new_weights (model):
new_weights = (np.add(1,calculate_accuracy_vector (model.predict
(test_set), test_labels)))/(np.sum(np.add(l,calculate_accuracy_vector

(model.predict (test_set), test_labels))))
return new_weights

Listing 7.6 Arcing weights calculation function

The voting is slightly different compared to the classic AdaBoost method and can
be implemented as in Listing 7.7).

def get_prediction(x):
predictions = []
for i in range(len(classifiers)):
predicted = classifiers[i].predict(x)
predictions.append(predicted)
return predictions[np.argmax(predictions)]

Listing 7.7 Arcing prediction with voting

RegionBoost is another modification of AdaBoost. The difference is that the
weights of each object depends locally on the importance of other k closest neigh-
borhood objects:

T
1
wi () = ;kNN(K, Ci, Xi, i), (1.9)
where
KNN(K, Cixi, y1) = —1 > I =) (7.10)
9 1 1 yl i K s yS . .
x;€N(K,X)

Stumping is a type of boosting that is applied to trees. A stump of a tree is a piece
of tine that is left over when you cut the rest. Stumping consists of simply taking the
root of the tree and using that as the decision maker. For each classifier, you use the
very first question that makes up the root of the tree, and that is it.
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7.2 Bagging

Bagging [3] is a short name for bootstrap aggregation. Generate individual classifiers
on bootstrap samples of the training set. A bootstrap sample is a sample of the training
set taken from the original data set with replacement, so that we may get some data
several times and others not at all. The bootstrap sample is the same size as the
original data set. Bagging traditionally uses component classifiers of the same type
and combines prediction by a simple majority vote across. The steps of a bagging
algorithm are as follows:

1. create T bootstrap samples S;,
2. for each sample S; train a classifier,
3. vote:

T
f(x) = argmax Z(ﬁ(X) =y). (7.11)

The voting part chooses the most common label among the models. It is a good
practice to have an odd value of models for binary decision problems. The approach
can be drawn as shown in Fig.7.4. We have T bootstrap sets (S7) used to train T
models (Cr) using the same method. As each model is trained on different sets, it
differs from other models. A popular example of a bagging method is the random
forest method [4]. The general bagging steps can be specified for the random forest
method as follows:

[Learning dataset S]

aD) [Bootstrap datasets]

D) Single classifiers

Fig. 7.4 General overview of the bagging method steps
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1. for each tree of N, we create a new bootstrap data set and train it,

2. at each node of the decision tree, randomly select m features and compute the
information gain only on that set of features, selecting the optimal one,

3. repeat until the tree is complete.

All steps should be clear, as we have already covered the decision trees in the previous
chapter. A simplified random forest method can be implemented with only four
functions. The ensemble methods are complex enough that simple examples as used
in the beginning of this book are not complex enough for testing purposes. That is
why, for this example, we used one of the classic data sets called Iris. It consists of
three types of iris flowers.

In the following example, we use the random forest method. Itis a bagging method
that, as a classification method, uses the decision tree. Instead of implementing
the tree from scratch, as we did in the previous chapter, we use the scikit-learn
implementation of it (Listing 7.8).
from sklearn import tree
import numpy as np
from sklearn.metrics import accuracy_score

decision_tree = tree.DecisionTreeClassifier ()

Listing 7.8 Libraries import for bagging method

The crucial part of the bagging method is the setup of bootstrap sets. Each set
can be chosen randomly using the random. random NumPy method. It can be
implemented as in the Listing 7.9.

def create_bootstrap_data():
bootstrap_ids = np.random.randint (0, len(data_set), size=len(data_set)
)
return data_set[bootstrap_ids,:],labels[bootstrap_ids]

Listing 7.9 Bootstrap set generation method

We have divided the implementation of the models into two separate methods. In
thebuild_classifier method, we build just one instance of a model built using
a bootstrap set. In the next method, we combine each model into a list of models.
In each loop, we create a new bootstrap set, then use it to train a new model, and
finally add it to the list. The implementation is shown in the Listing 7.10. The method

implemented is also known as the random forest.
def build_classifier (data_set, labels):
decision_tree = tree.DecisionTreeClassifier ()

decision_tree.fit(data_set, labels)
return decision_tree

def build_classifiers(cases):

classifiers = []

for case in range(cases):
bootstrap_set, bootstrap_labels = create_bootstrap_data()
classifier = build_classifier(bootstrap_set, bootstrap_labels)

classifiers.append(classifier)
return classifiers

Listing 7.10 Bagging classifiers preparation and combination method
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The remaining voting method can be implemented as two loops: one that receives
the classifier output, and the second counts the prediction by label and returns the
most predicted label. The implementation is given in Listing 7.11.

def vote(classifiers, test_data):

output = []

for classifier in classifiers:
output .append(classifier.predict(test_data))

output = np.array(output)

predicted = []

for i in range(len(test_data)):
classified = output[:, il
counts = np.bincount(classified)
predicted.append(np.argmax (counts))

return predicted

Listing 7.11 Bagging voting method

Finally, we can check the results based on ten classifiers by running the code as
given in Listing 7.12. The last line calculates the accuracy of the model.

classifiers = build_classifiers(10)
> predicted = vote(classifiers, test_data_set)
3 accuracy = accuracy_score(test_labels, predicted)

Listing 7.12 Bagging method executing

Now, we can compare the ensemble method with a typical decision tree. We will
use the same data set, but we modify the tree a bit as the overall challenge for a tree
in these cases is not high. We limit the tree depth to 2 for both the ensemble models
and the decision tree with which we will compare.

Example 2 (Random forest on flowers) The random forest is just a group of decision
trees fed with different training sets that work as a bagging ensemble method. It
usually works better than a single decision tree. In Listing 7.13, an example of a
single decision tree is shown. It uses a bootstrap set similarly to the random forest
trees.

tree_data_set, tree_labels = create_bootstrap_data(train_set, train_labels

)

> decision_tree = tree.DecisionTreeClassifier(max_depth=3)
3 decision_tree.fit(tree_data_set, tree_labels)

6

predicted = decision_tree.predict(test_set)
accuracy = accuracy_score(test_labels, predicted)
print (accuracy)

Listing 7.13 Iris single decision tree classifier

In Listing 7.14, we use the same data set as in the single tree, but we create a few
bootstrap sets to train the same number of trees as sets. The classical Iris data set is
part of the scikit-learn data set. The bootstrap sets are created within the classifier
training method (Listing 7.10).

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris = load_iris ()
random_objects = np.random.randint (0, 130, size=120)
data_set = iris.datal[random_objects]

labels = iris.target[random_objects]
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Fig. 7.5 TIris classification using a decision tree (a) and random forest (b). Cases with black square
border are the ones that were misclassified

9

10 train_set, test_set, train_labels, test_labels = train_test_split(data_set
, labels, test_size=0.5, random_state=42)

11

12 classifiers = build_classifiers(5, train_set, train_labels)
13 predicted = vote(classifiers, test_set)
14 accuracy = accuracy_score(test_labels, predicted)

15 print (accuracy)

Listing 7.14 Iris bagging (random forest) classification example

The final classification result is shown in Fig.7.5. The misclassified objects are
marked with a black boundary. On the left side, there are five objects that are mis-
classified when only one decision tree is used. On the other side, we have only two
such cases. Here the random forest of five trees is used.

7.3 Stacking

Stacking as is can be deduced from the name of this ensemble method, is a method
that uses different classifiers and builds these into a stack. Usually, in the stacking
method, the models used for classification are architecturally different, as the input
data set is the same for each method at the first level of the stack. The second level
of the stack is a set of the predictions for each model in the first level. The third stack
level is built from one meta-classifier that uses the validation set (second level) and
based on that the final prediction is made. An overview of the method is shown in
Fig.7.6.
The stacking method can be divided into the following steps:

1. create T classifiers and learn each to get m predictions (hypothesis #,),
2. construct data set of predictions into a validation data set,
3. construct a C meta-classifier that combines all C,, classifiers.
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Fig. 7.6 General overview
of the stacking method

Table 7.1 Example stacking
classifiers prediction results
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Training dataset

D (Classifier T

Validation dataset

Meta classifier

Predictions

Ci C, C; Cr C
1 0 1 1

0 0 0 1 0

0 1 1 1 1

An example of a few classifiers Cy, C,, C3, Cr is shown in Table 7.1. The pre-
dictions of each are chosen randomly (columns C; to C7). These predictions are the
inputs for the C classifier. The final prediction is given in the last column. Similarly
to the previous ensemble method, we use different classifiers from the scikit-learn
package. In the current example, we include five different methods that are given
in the Listing 7.15. We use the QDA, linear regression, kNN, and a decision tree

classifier.

import numpy

3 from sklearn
+ from sklearn

5 from sklearn
v from sklearn.

from sklearn.

as np

.discriminant_analysis import QuadraticDiscriminantAnalysis
.naive_bayes import GaussianNB
.neighbors import KNeighborsClassifier

tree import DecisionTreeClassifier

metrics import accuracy_score

Listing 7.15 Stacking libraries import

The implementation can be divided into two methods, one for each level. The
function build_classifiers where we train the models (Listing 7.16) based
on the scikit-learn implementations imported in the previous listing. The function
returns a list of models trained on the same data set.
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def build_classifiers(train_set, train_labels):

neighbors = KNeighborsClassifier ()
neighbors.fit(train_set, train_labels)

bayes = GaussianNB()
bayes.fit(train_set, train_labels)

gda = QuadraticDiscriminantAnalysis()
qda.fit(train_set, train_labels)

return neighbors, bayes, qda

Listing 7.16 Stacking classification methods building

In our example, the meta-classifier is built using the decision tree method. The
meta-classifier used in the Listing 7.17 is used (line 9) between two loops. In the
first loop, we collect the predictions of the first-level models. These predictions are
then used as input for the decision tree method. Finally, the last loop goes through a
testing set and returns the final prediction.

def build_stacked_classifier(classifiers, train_set, train_labels,
test_set, test_labels):
output = []
for classifier in classifiers:
output.append(classifier.predict(train_set))
meta_set = np.stack((output[0],output[1],output[2]), axis = 1)

decision_tree = DecisionTreeClassifier ()
decision_tree.fit(meta_set, train_labels)

output = []

for classifier in classifiers:
output.append(classifier.predict(test_set))

meta_test_set = np.stack((output[0],output[1],output[2]), axis = 1)

predicted = decision_tree.predict(meta_test_set)

return predicted

Listing 7.17 Stacked classification method

Example 3 (Breast cancer classified using stacking method) To execute above, we
can use three similar lines of code as in the previous method (Listing 7.18).

from sklearn.datasets import load_breast_cancer

breast = load_breast_cancer ()

random_objects = np.random.randint (0, 178, size=140)

data_set = breast.datalrandom_objects]

labels = breast.target[random_objects]

train_set, test_set, train_labels, test_labels = train_test_split(data_set

, labels, test_size=0.3, random_state=42)

classifiers = build_classifiers(train_set, train_labels)

predicted = build_stacked_classifier(classifiers, train_set, train_labels,
test_set, test_labels)

accuracy = accuracy_score (test_labels, predicted)

print (accuracy)

Listing 7.18 Stacking classification method used on breast dataset

The accuracy achieved using the combined classifier is 97.62% where using a
single decision tree only 90,48%.
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Table 7.2 Grading base training set
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Predictions
Cy Cy Cs Cr Label
0 1 1

0 0 0 1 0

0 1 1 1 1
Table 7.3 Grading attribute set

Attributes

X1 X2 X3 Xp Graded

predictions

0.2 0.5 —-0.1 0.4 +

—0.1 0.15 -0.7 0.5 +

0.8 0.2 —-0.24 0.6 +
Grading

Grading can be considered as a modified stacking method as the main goal here is to
use the input of different models. The base data set is almost the same, but instead
of using a meta-classifier, we only have the original labels for training purposes, as
shown in Table 7.2. The main difference is in the way the data for the meta-classifier
are given. The attributes (features) are given as input (Table 7.3). Graded predictions
are the values of whether or not a prediction of a given classifier is done properly.

The implementation is simple as in the previous methods, where the first function
is implemented almost the same as in the stacking classifier (Listing 7.19).

def calculate_accuracy_vector(predicted, labels):
result = []
for i in range(len(predicted)):
if predicted[i] == labels[il:
result.append (1)
else:
result.append (0)
return result

def build_grading_classifier(classifiers, train_set, train_labels):
output = []

matrix = []
for classifier in classifiers:
predicted = classifier.predict(train_set)

output.append(predicted)
matrix.append(calculate_accuracy_vector (predicted, train_labels))

grading_classifiers = []

for i in range(len(classifiers)):
tree = DecisionTreeClassifier ()
tree.fit(train_set, matrix[i])
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grading_classifiers.append(tree)
return grading_classifiers

Listing 7.19 Grading meta classifier implementation

The second function is about the grades of the predictions. We loop the predictions

and grade if the prediction is correct or wrong (Listing 7.20).
def get_grads(predicted, labels):
result = []
for i in range(len(predicted)):
if predicted[i] == labels[il]:
result.append (1)
else:
result.append (0)
return result

Listing 7.20 Grading grades calculation

Testing the predictions includes the grades and the prediction. As in Listing 7.21,
we have two models, one for the prediction and the second for the grading.

def test_prediction(classifiers, grading_classifiers, test_set, i):
prediction = classifiers[i].predict(test_set)
grad = grading_classifiers[i].predict(test_set)
return prediction, grad

Listing 7.21 Grading prediction testing

Example 4 (Breast classifier grading) The main part invokes the three functions
that are explained above. An example of the implementation is shown in the Listing
7.22.

from sklearn.datasets import load_breast_cancer

3 breast = load_breast_cancer ()
random_objects = np.random.randint (0, 178, size=140)
data_set = breast.datalrandom_objects]
labels = breast.target[random_objects]
train_set, test_set, train_labels, test_labels = train_test_split(data_set

, labels, test_size=0.5, random_state=42)

classifiers = build_grad_classifiers(train_set, train_labels)
grading_classifiers = build_grading_classifier(classifiers, train_set,
train_labels)

5 prediction, grad = test_prediction(classifiers, grading_classifiers,

test_set, 1)

Listing 7.22 Grading main code used on breast set

The results are shown in Table 7.4. The classifier makes two mistakes. The object
#24 and #41 are the ones where the grading method is found where the classification
is possibly made wrong. The accuracy of the model achieved is about 85,71%, so
the grading method did not find all the mistakes.



203

7.3 Stacking

Table 7.4 Grading of classifier on the breast data set

Label

Prediction | Grading

1D
36
37
38

39
40

41

42

43

44

45

46

47

48

49

50
51

52
53

54
55
56
57
58
59
60
61

62
63

64
65

66

67

68

69
70

Label

Prediction | Grading

ID

10

11

12
13

14
15

16
17
18
19
20
21

22

23

24
25

26

27
28

29

30
31

32
33

34
35
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Chapter 8 ®)
Neural Networks Gedar

Natural (biological) neurons are the fundamental building blocks of the nervous
system, particularly the brain. These biological units process and transmit informa-
tion using electrical and chemical signals. Each neuron has three main components
(see Fig.8.1):

1. Dendrites: Branch-like structures that receive signals from other neurons. These
inputs can be excitatory or inhibitory, influencing the likelihood of firing of the
neuron.

2. Cell Body (Soma): Integrates the incoming signals from dendrites. If the com-
bined input exceeds a certain threshold, the neuron generates an action potential.

3. Axon: A long and slender projection that transmits the action potential to other
neurons via synapses. In the synapse, chemical neurotransmitters are released,
which influence the activity of the next neuron.

Processing within a neuron is an electrochemical event. Input signals, arriving as
neurotransmitters in synapses, generate changes in the membrane potential of the
neuron. If these changes sum up to exceed a critical threshold, an action potential—a
rapid electrical impulse—travels down the axon to communicate with subsequent
neurons. This threshold mechanism is the key to neuronal function as a decision-
making unit in the nervous system.

Natural neurons communicate within highly interconnected networks, where the
strength of synaptic connections (synaptic plasticity) is adapted based on experience,
enabling learning and memory.

Artificial neural networks (ANNSs) are computational models inspired by the
structure and function of natural neurons. In an ANN, artificial neurons, often called
nodes or units, are organized into layers: an input layer, one or more hidden layers,
and an output layer.

Each artificial neuron mimics the behavior of a biological neuron:

1. Input Signals: Each neuron receives input, typically represented as numerical
values.
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Fig. 8.1 Natural (biological)
neuron has three main
components: a dendrites, b
soma, and ¢ axon

2. Weights: Each input is associated with a weight that indicates its importance.
The neuron calculates a weighted sum of the inputs.

3. Bias: A bias term is added to the weighted sum, allowing the neuron to change
its activation threshold.

4. Activation Function: The result is passed through a non-linear activation func-
tion, determining the neuron output.

The neuron output is then passed to the neurons in the next layer. By training
the network and adjusting weights and biases using optimization algorithms such
as stochastic gradient descent, the ANN learns to map inputs to outputs effectively,
enabling it to perform tasks such as classification, regression, or generation.

Unlike biological networks, ANNs operate using strictly mathematical rules and
lack the biochemical complexity of natural neurons. However, conceptual similarity,
the use of interconnected processing units, is key to their design.

The first mathematical description of a neuron was proposed by Warren McCul-
loch and Walter Pitts in 1943 [1]. Their model, known as the McCulloch-Pitts Neuron,
formalized the idea of a neuron as a simple computational unit:

1. The neuron receives inputs x1, x2,..., X,, each associated with a binary value (0
or 1).

2. Each input is multiplied by the corresponding weight w;, ws,..., w,, representing
the connection strength.

3. The neuron computes a weighted sum:

7= iw,-x,-. (81)

i=1

4. If the weighted sum exceeds a predefined threshold theta, the neuron fires and
produces a 1. Otherwise, it outputs a 0:
1 ifz>06
y= .
0 ifz<¥6
This binary model was inspired by logical operations and could simulate simple
logical functions such as AND, OR, and NOT. McCulloch and Pitts demonstrated
that networks of such neurons could, in principle, compute any function that is
computable by a Turing machine, laying the foundation for neural network theory.
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Despite its simplicity, the McCulloch-Pitts model introduced several fundamental
ideas:

e Thresholding: The concept of activation based on input strength.

e Weighted connections: The idea that inputs contribute differently to the output of
a neuron.

e Network computation: The realization that interconnected neurons can perform
complex computations.

This model inspired further developments, including the perceptron, introduced
by Frank Rosenblattin 1958 [2]. The perceptron extended the McCulloch-Pitts model
by introducing adjustable weights and a learning algorithm, marking the beginning
of trainable neural networks.

Although the McCulloch-Pitts neuron was groundbreaking, its binary output lim-
ited its applicability. Subsequent models introduced continuous outputs using acti-
vation functions like the sigmoid, allowing neural networks to model more complex
and non-linear relationships. These advancements, combined with the development
of backpropagation in the 1980s, transformed neural networks into powerful tools
for pattern recognition and machine learning.

The journey from the McCulloch-Pitts model to modern deep learning reflects an
ongoing effort to balance biological inspiration with mathematical and computational
practicality, continually expanding the capabilities of artificial neural networks.

Fun fact: In the 1930s, studying nerve axons was a major challenge due to
their microscopic size and the limitations of available tools. Andrew Hodgkin
and Alan Lloyd Huxley overcame this by turning to the giant axon of the
squid, which is up to 1 millimeter in diameter. Working at Plymouth Marine
Laboratory in 1939, they used freshly caught squid, racing against time to
keep the axons viable. The squid’s axon, crucial for its jet propulsion, allowed
them to directly measure electrical signals and develop their groundbreaking
model of action potentials. This work, later earning them a Nobel Prize,
transformed neuroscience and highlighted the squid’s unexpected role in
advancing science.”

¢ https://pmc.ncbi.nlm.nih.gov/articles/PMC3424716/pdf/tjp0590-2571.pdf.

8.1 Artificial Neurons

Artificial neurons, inspired by their biological counterparts, form the essential com-
putational units of neural networks. These mathematical abstractions mimic the
behavior of biological neurons in the human brain that process and transmit informa-
tion via electrochemical signals. In artificial neural networks, a neuron is designed
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to receive multiple inputs, each associated with a numerical weight representing its
relative importance. The neuron aggregates these inputs into a weighted sum, adds a
bias term, and applies a non-linear activation function to generate an output. This pro-
cess mirrors the way biological neurons integrate signals from synapses and decide
whether to fire an action potential.

The mathematical formulation of a neuron is straightforward yet remarkably
powerful. Let xi, x5, ...,x, represent the inputs to the neuron, and let w;, wy, ...,
w, denote their corresponding weights. The neuron computes the weighted sum
z =), wx; + b, where b is the bias term. The bias allows the neuron to adjust
the output independently of the inputs, thereby increasing the flexibility of the model.
The next step is to pass z through an activation function, denoted f(z), to produce
the output of the neuron. The activation function introduces non-linearity, a critical
property that enables neural networks to approximate complex functions and solve
non-linear problems. Without non-linear activation functions, a neural network would
be equivalent to a linear model, regardless of its depth or complexity (Fig. 8.2).

The choice of activation function significantly influences the behavior of a neuron
and the overall performance of a neural network. The sigmoid function, one of the
first activation functions, compresses the input z into a range between O and 1,
making it suitable for probability-based interpretations. However, sigmoid functions
suffer from the vanishing-gradient problem, where gradients become extremely small
for large or small input values, hindering effective weight updates during training.
Another common activation function is the hyperbolic tangent (tanh), which maps z
to the range [—1, 1], allowing it to capture both positive and negative relationships.
Despite its wider output range, tanh shares the problem of vanishing gradients with
the sigmoid function.

Modern neural networks frequently employ the Rectified Linear Unit (ReLU)
activation function, which outputs z directly if it is positive and zero otherwise.
This simplicity makes ReLU computationally efficient and less prone to vanishing
gradients, facilitating deeper network architectures. Variants of ReLU, such as Leaky
ReLU and Parametric ReLU, address its potential drawback, dead neurons, which are
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neurons that output zero for all inputs during training, effectively becoming inactive.
The choice of activation function is not merely a technical detail, but a strategic
decision that profoundly affects the model’s ability to learn and generalize from
data.

Neurons are arranged in layers within a neural network: the input layer, one or
more hidden layers, and the output layer. The input layer contains neurons cor-
responding to the features of the data, and its role is to pass these features forward
without transformation. Hidden layers, as the name suggests, are not directly observ-
able and perform complex transformations on the data through weighted connections
and activation functions. The output layer generates the final prediction or decision
of the network. The dense connectivity between neurons in adjacent layers enables
the network to build hierarchical representations of the data. For example, in image
recognition tasks, lower layers might detect simple patterns such as edges or corners,
while deeper layers identify more abstract features such as shapes or objects.

Training a neural network involves optimizing the weights and biases of its neu-
rons to minimize the error between the predicted outputs and the true labels of a data
set. This process typically employs backpropagation, a method for computing gra-
dients of the loss function with respect to each parameter in the network. Gradients
are then used to update the weights and biases via an optimization algorithm such as
stochastic gradient descent (SGD). The role of the neuron in this training process is
pivotal, as the output of each neuron contributes to the overall error, and its gradient
determines how much its parameters should be adjusted.

The interconnected nature of neurons is both a strength and a challenge. Although
the dense network structure enables powerful modeling capabilities, it also increases
the risk of overfitting, where the network performs exceptionally well on the train-
ing data but fails to generalize to unseen data. Regularization techniques, such as
weight decay and dropout, help mitigate this issue by introducing constraints or
stochasticity into the learning process. These techniques often operate at the level
of individual neurons, reinforcing the importance of understanding their role in the
broader network.

Artificial neurons, despite their simplicity, are the cornerstone of neural networks
and, by extension, modern artificial intelligence. They embody the principles of
abstraction and modularity, allowing complex systems to be constructed from simple
components. The study of neurons not only reveals insights into the mechanisms
of neural networks but also bridges the gap between computational models and
biological intelligence, offering a glimpse into how artificial and natural systems can
converge.
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Perceptron

The perceptron, introduced by Frank Rosenblatt in 1958 [2], is one of the earliest and
simplest models of artificial neurons and serves as the foundation for understanding
more complex neural networks. Designed as a binary classifier, the perceptron aims to
distinguish between two classes by learning a linear decision boundary. Structurally,
a perceptron is composed of a single layer of neurons where each neuron performs
a weighted sum of its inputs, adds a bias, and applies a step activation function to
produce an output. The mathematical formulation can be expressed as

y=f (Z wixi + b) , (8.2)
i=1

where f(z) is the step function that produces 1 if z > 0 and 0 otherwise. This sim-
plicity makes the perceptron easy to implement and train, but also imposes significant
limitations, particularly in its inability to solve non-linearly separable problems.

The training process for a perceptron involves adjusting its weights and bias using
asupervised learning algorithm. Given a data set of input-output pairs, the perceptron
learns by iteratively comparing its predictions to the actual labels and updating its
parameters to reduce classification errors. The update rule for weights is given by
w; < w; + Aw;, where Aw; = n - (y — ¥) - x;. Here, 1 is the learning rate, y is the
true label, ¥ is the predicted label, and x; is the input feature. Similarly, the bias b is
updated using b < b 4+ n - (y — 3). These updates are performed iteratively on the
data set until the perceptron correctly classifies all training examples or a predefined
maximum number of iterations is reached. The perceptron convergence theorem
guarantees that the algorithm will find a solution if the data are linearly separable,
but no such guarantee exists for non-linearly separable data.

The perceptron’s ability to classify linearly separable data stems from its represen-
tation of a hyperplane in the input space. The weights and bias define the orientation
and position of this hyperplane, which acts as the decision boundary between the
two classes. For example, in a two-dimensional input space, the perceptron learns
a straight line that separates data points belonging to different classes. However,
when data points cannot be separated by a single hyperplane—such as in the XOR
problem—the perceptron fails because its linear nature does not allow it to capture
the underlying structure of the data. This limitation, famously demonstrated by Mar-
vin Minsky and Seymour Papert in their 1969 book Perceptrons [3], highlighted the
need for more sophisticated models and led to a temporary decline in interest in
neural networks, often referred to as the “Al winter” (Fig. 8.3).

Despite its limitations, the perceptron remains a fundamental concept in the study
of neural networks. Its simplicity makes it an excellent starting point for understand-
ing the principles of supervised learning, weight optimization, and decision bound-
aries. Furthermore, the architecture of the perceptron inspired the development of
multilayer perceptrons (MLPs), which address its shortcomings by introducing hid-
den layers and non-linear activation functions. By stacking layers of perceptrons
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and using algorithms like backpropagation to train them, MLPs can approximate
complex, non-linear decision boundaries and solve problems that are beyond the
capability of a single-layer perceptron (Fig. 8.4).

The historical significance of the perceptron extends beyond its technical contri-
butions. It marked the first concrete step toward the realization of artificial neural
networks, bridging the gap between theoretical models of computation and biologi-
cally inspired systems. In addition, the failure of the perceptron to solve non-linear
problems underscored the importance of non-linearity in neural network design, a
principle that remains central to modern deep learning architectures. Today, the per-
ceptron is often used as a pedagogical tool to introduce students and researchers
to the basics of machine learning and neural network theory, providing a clear and
intuitive framework for understanding more advanced models.

In practical applications, the perceptron has been largely superseded by more
advanced algorithms such as support vector machines, logistic regression, and deep
neural networks. However, its historical role and conceptual simplicity ensure its con-
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tinued relevance in discussions of the evolution of artificial intelligence and machine
learning.

Example 1 (Perceptron)

The code defines a simple structure for a neuron model in a neural network.
The ActivationFunction class acts as a placeholder for activation functions.
The neuron class initializes attributes such as input values, weights, bias, and
learning parameters. It includes methods for setting random weights, scaling inputs,
calculating weighted sums, and generating predictions using the activation function.
The learning behavior is not implemented, and the activation function is left abstract.

| class ActivationFunction():

def return_y(self,s = float):
4 raise Exception("NotImplementedException")

7 class Neuron(object):

9 input_values = []

10 activation = ActivationFunction ()
11 bias = 1.0

12 weights = []

13 output_values = []

14 epochs = 10

15 error = 0.2

16 debug = False

19 def _ _set_random_weights(self):
20 if len(self.input) = = 0:

21 raise Exception("Input not given")
22 for i in xrange(len(self.input[0])):

self .weights.append(randint (—10,10)/10.0)

25 def get_sum(self,iter):
26 return np.dot(np.array(self.weights),
27 np.array (self.input_values[iter]))

29 def set_weights(self,weights=None):
30 if weights = = None:

31 self.__set_random_weights ()
32 else:

33 self .weights=weights

35 def set_input(self,input,scale=False):

36 if scale = = True:

37 self.input_values = np.array(input)/(max(max (input))*1.0)
38 else:

39 self.input_values = input

40

41 def learn(self):

42 raise Exception("NotImplementedException")

14 def get_predictions(self):

45 prediction = []

46 for i in xrange(len(self.output)):

47 prediction.append(

18 self.activation.return_y(self.get_s(i)))

19 return prediction

Listing 8.1 Perceptron implementation example
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Fun fact: The Perceptron was invented by Frank Rosenblatt, a psychologist
and computer scientist, at the Cornell Aeronautical Laboratory in 1957. Its
initial purpose was to mimic the human brain’s ability to recognize patterns.
Rosenblatt boldly declared that the Perceptron would eventually be capable
of tasks like recognizing faces and translating languages—predictions that
were remarkably ahead of their time.

In a high-profile demonstration in 1958, Rosenblatt showcased the Mark 1
Perceptron, a room-sized machine equipped with an array of photo sensors
and an analog computing system. It was trained to distinguish between simple
patterns, such as horizontal and vertical lines. The Perceptron was widely
celebrated, with media outlets like The New York Times heralding it as a
step toward building intelligent machines. The headlines declared that the
Perceptron could “walk, talk, see, write, reproduce itself, and be conscious
of its existence.” ¢

¢ https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-
psychologist-shows-embryo-of.html.

Other Neuron Types

Artificial neurons, the building blocks of neural networks, come in various types,
each designed to address specific computational needs and problem domains. These
neuron types differ primarily in their structure, activation functions, and the manner
in which they process and transmit information. Although all neurons share the
fundamental principle of combining input through weighted summation and applying
bias, their distinct configurations enable neural networks to tackle a wide range of
tasks, from basic classification problems to complex pattern recognition and decision-
making processes (Table8.1).

8.2 Shallow Networks

Shallow networks refer to neural network architectures that consist of only one or two
layers of neurons between the input and output layers. These networks, characterized
by their simplicity and relatively small number of parameters, are often the starting
point for understanding neural networks. Despite their straightforward structure,
shallow networks are capable of solving a variety of problems, particularly those
that are linearly separable or involve simpler non-linear relationships. Their reduced
computational requirements and ease of implementation make them suitable for
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Table 8.1 Comparison of different artificial neuron types

Neuron type Characteristics and mathematical formulas
Binary neuron Produces binary outputs (0 or 1). Suitable for linearly separable tasks.
1, z20
Z =
f@ 0. 220
Linear neuron Outputs the weighted sum of inputs. Suitable for regression but lacks
non-linearity.
f@) =z
Sigmoid neuron | Outputs values in (0, 1). Enables probabilistic interpretations.
f@) ==
Tanh neuron Outputs values in (—1, 1). Captures positive and negative relationships.
f@ ==
ReLU neuron Outputs input directly if positive; otherwise, 0. Efficient for deep net-
works.
f(2) = max(0, z)
Leaky ReLU Allows small slopes for negative inputs. Reduces “dead neuron” issues.
z, 220
f@) =
az, z<0

Softmax neuron | Converts outputs into probabilities. Used for multi-class classification.

. — EZ[

f@) = Y g
RBF neuron Computes outputs based on distance to a center. Used for pattern recog-

nition.

Flx) = eVlk—el?
Spiking neuron | Mimics biological spiking behavior. Used in neuromorphic computing
Convolutional Specialized for spatial features in images or videos. Found in CNNs
neuron

Recurrent neuron| Maintains memory of sequences. Used in RNNs, LSTMs, GRUs

certain applications and for educational purposes, where they serve as an introduction
to the principles of neural computation.

The most basic shallow network consists of a single hidden layer sandwiched
between the input and output layers. Each neuron in the hidden layer performs a
weighted sum of its inputs, applies a bias, and uses an activation function to intro-
duce non-linearity. The output layer then processes the transformed data from the
hidden layer and generates the final prediction. For example, in binary classification
tasks, a shallow network might use sigmoid neurons in the output layer to predict
probabilities, while the hidden layer could employ ReLU or tanh neurons to capture
non-linear patterns in the data.

Shallow networks are effective for problems where the underlying data structure
can be captured with a limited number of non-linear transformations. For instance,
in simple pattern recognition tasks, such as distinguishing between two shapes or
basic regression tasks such as predicting a single variable, shallow networks often
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perform adequately. Their simplicity can also be advantageous when computational
resources are limited or when the size of the data set is small, as shallow networks
are less prone to overfitting compared to deeper architectures with a similar number
of neurons.

However, the limitations of shallow networks become evident as the complexity
of the problem increases. Shallow networks struggle to approximate functions with
intricate non-linear relationships or hierarchical structures. For example, in image
recognition tasks, where features such as edges, textures, and objects need to be
captured at different levels of abstraction, shallow networks lack the depth required
to learn and represent such hierarchies effectively. This limitation is a direct con-
sequence of their architecture: With only one or two layers, the network cannot
perform the successive transformations necessary to extract high-level features from
raw input data.

The theoretical limitations of shallow networks can be understood through the
concept of representational power. Although it is true that a sufficiently large shal-
low network with an appropriate activation function can approximate any continuous
function, as established by the universal approximation theorem, the number of neu-
rons required for such an approximation grows exponentially with the complexity
of the function. This makes shallow networks inefficient and often impractical for
problems that require high-dimensional feature representations or intricate decision
boundaries.

Despite these drawbacks, shallow networks remain relevant in certain scenarios.
In applications where interpretability is critical, shallow networks are often preferred
because of their simpler architecture, which makes it easier to understand and ana-
lyze how the network makes its decisions. In addition, they serve as a foundation
for understanding the dynamics of neural networks, such as weight optimization,
activation functions, and gradient-based learning algorithms. For this reason, shal-
low networks are widely used as educational tools and benchmarks to evaluate the
performance of more advanced models.

Another area where shallow networks can be advantageous is in transfer learning.
Pre-trained deep networks can be used to extract high-level features from complex
data sets, and a shallow network can then be employed as a classifier on top of these
features. This approach leverages the representational power of deep networks while
maintaining the simplicity and computational efficiency of shallow architectures.

In modern machine learning, shallow networks have largely been replaced by deep
neural networks for tasks involving high-dimensional data or complex relationships.
However, their simplicity, efficiency, and role as a conceptual stepping stone to more
advanced architectures ensure their continued relevance. They highlight the trade-
offs between model complexity, computational resources, and task requirements,
providing valuable information on the design and application of neural networks.
Understanding shallow networks is essential for appreciating the advancements and
capabilities of deeper architectures, as well as for recognizing the conditions under
which simpler models may still be the most appropriate choice.
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8.3 Learning Methods

Learning methods in neural networks refer to the algorithms and processes by which a
network adjusts its parameters, namely weights and biases, to minimize the difference
between its predictions and the actual target values. These methods form the founda-
tion for the network’s ability to generalize data and solve a variety of tasks, including
classification, regression, and pattern recognition. In general, learning methods are
categorized into three main paradigms: supervised learning, unsupervised learning,
and reinforcement learning. Each paradigm has unique characteristics, applications,
and underlying algorithms.

Supervised Learning

Supervised learning is the most widely used paradigm for training neural networks,
particularly for tasks where labeled data are available. In this method, the network
is provided with input-output pairs, where each input corresponds to a known target
label. The network learns by iteratively adjusting its parameters to minimize a loss
function that quantifies the error between the predicted output and the actual label.

The most common algorithm for supervised learning in neural networks is back-
propagation, which relies on the chain rule of calculus to compute the gradients of
the loss function with respect to each parameter. These gradients are used to update
the weights and biases through an optimization algorithm such as stochastic gradient
descent (SGD) or its variants like Adam, RMSprop, or Adagrad. The update rule in
gradient descent is typically expressed as w; <~ w; —n - %, where 7 is the learn-
ing rate, £ is the loss function, and % is the loss gradient with respect to weight
w;. Regularization techniques such as regularization for L1 or L2, dropout, or early
stopping are often incorporated into the learning process to prevent overfitting and
improve generalization.

Supervised learning is extensively applied in tasks such as image classification,
natural language processing, speech recognition, and medical diagnosis. Its success
depends heavily on the quality and quantity of labeled data, as well as on the choice
of network architecture and optimization algorithm.
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Fun fact: In one famous and interesting study authors explored how spu-
rious correlations in data can lead to flawed machine learning models and
emphasizes the importance of interpretability.

Researchers trained a classifier to distinguish wolves from huskies, but inten-
tionally biased the data set so that all wolf images featured snow in the back-
ground, while husky images did not. As a result, the model relied on snow
as the deciding factor rather than animal-specific traits.*

¢ arXiv:1602.04938.

Unsupervised Learning

Inunsupervised learning, the network is trained on input data without the correspond-
ing target labels. Instead of learning explicit input-output mappings, the network dis-
covers patterns, structures, or distributions inherent in the data. This is particularly
useful for exploratory data analysis, clustering, and dimensionality reduction.

One prominent approach in unsupervised learning is autoencoders, where the
network learns to reconstruct its input by compressing it into a lower-dimensional
representation and then decompressing it. The compressed representation captures
the most salient features of the data, making autoencoders useful for tasks such as
anomaly detection, image denoising, and feature extraction.

Another common technique is clustering, where the network organizes data into
groups based on similarity. Algorithms such as k-means or self-organizing maps
(SOMs) are often employed in this context. Additionally, generative models, such as
generative adversarial networks (GANs) and variational autoencoders (VAEs), fall
under unsupervised learning. These models learn to generate new data samples that
resemble the original data set, enabling applications in data augmentation, image
synthesis, and creative Al

Unsupervised learning is particularly valuable in scenarios where labeled data
is scarce or unavailable. However, its success often depends on the ability of the
model to define meaningful patterns and structures, which can be subjective and
task-dependent.

Reinforcement Learning
Reinforcement learning (RL) is a learning paradigm in which a neural network,

called an agent, learns to make decisions by interacting with an environment. The
agent receives feedback in the form of rewards or penalties based on its actions and
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its goal is to maximize the cumulative reward over time. Unlike supervised learning,
RL does not require labeled input-output pairs; instead, it relies on trial-and-error
exploration and exploitation to learn optimal policies.

Key algorithms in reinforcement learning include Q-learning, deep Q-networks
(DQN), and policy gradient methods. In DQNs, for example, the agent uses a neural
network to approximate a Q-function, which predicts the expected reward for taking
a given action in a specific state. The network is trained using a combination of
temporal-difference learning and backpropagation.

Reinforcement learning has shown remarkable success in areas such as game
playing (e.g., AlphaGo, AlphaZero), robotics, and autonomous vehicles. However,
it is computationally intensive and often requires large amounts of interaction data
to converge to optimal policies.

Fun fact: In 2016, OpenAl researchers working on reinforcement learn-
ing faced an amusing, yet eye-opening scenario while developing an Al
for the classic video game CoastRunners. The game, a boat-racing simu-
lator, involves steering a boat through a racecourse to compete for speed
and position. Players (and Al) gain points for collecting targets and passing
checkpoints while navigating the course.

The researchers set a straightforward goal for their Al: maximize the score.
They assumed that higher scores would naturally align with better racing
performance, finishing the course quickly and efficiently. After training the
Al, they excitedly watched it move to the water.

To their surprise, the Al’s behavior deviated sharply from expectations.
Instead of racing toward the finish line, the Al found a small area on the
course where it could endlessly collide with objects and repeatedly collect
the same set of points. It completely abandoned the race, instead opting to
exploit the reward system in its narrowest sense: maximizing points without
regard for the broader goal of finishing the race.

This behavior was a textbook case of the alignment problem: Al did exactly
what it was rewarded for, but entirely missed the designers’ true intent. The
Al had not learned to race; it had learned to exploit a loophole in the scoring
system. ¢

¢ https://openai.com/index/faulty-reward-functions/.
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Semi-supervised and Self-supervised Learning

Semi-supervised learning combines elements of supervised and unsupervised learn-
ing by using a small amount of labeled data alongside a larger pool of unlabeled
data. This approach leverages the labeled data to guide the network, while exploiting
the unlabeled data to improve generalization. Techniques like pseudo-labeling and
consistency regularization are commonly used in semi-supervised learning.

Self-supervised learning, a subset of unsupervised learning, involves training a
network on tasks where the labels are derived automatically from the input data
itself. For example, in contrastive learning, the network is trained to recognize similar
and dissimilar pairs of data points. Self-supervised methods have gained significant
attention for their ability to pre-train networks on large-scale data sets without manual
labeling, followed by fine-tuning on downstream tasks.

Online and Transfer Learning

Online learning refers to scenarios where the model continuously updates its param-
eters as new data become available. This is particularly useful in dynamic environ-
ments where the data distribution evolves over time, such as stock market prediction
or adaptive control systems.

Transfer learning, on the other hand, involves reusing a pre-trained network for
a new task, often with minimal additional training. Using the features learned on a
large, general data set, transfer learning can significantly reduce training time and
improve performance, particularly in domains with limited labeled data.

Hybrid Approaches

In practice, many neural networks use hybrid learning methods that combine elements
of supervised, unsupervised, and reinforcement learning. For example, a network
might use unsupervised pre-training to initialize weights, followed by supervised
fine-tuning. Similarly, reinforcement learning can be augmented with supervised
signals to accelerate learning.

8.4 Training Algorithms

Training algorithms are the core mechanisms through which neural networks learn
from data by adjusting their parameters, weights, and biases to minimize errors
and improve performance. These algorithms leverage mathematical optimization
techniques to iteratively refine the model, ensuring that it can be generalized to
unseen data. The choice of training algorithm significantly impacts the efficiency,
convergence speed, and ultimate accuracy of a neural network. In general, training
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algorithms fall under the umbrella of optimization techniques, with variants tailored
to specific tasks and architectures.

Gradient Descent

Atthe heart of most training algorithms lies gradient descent, a fundamental optimiza-
tion method. Gradient descent minimizes a loss function £—a measure of network
error—by updating the network parameters in the direction of the steepest descent,
as defined by the gradient of £ with respect to each parameter. The update rule for
a weight is expressed as
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where 7 is the learning rate, a hyperparameter that controls the step size of the updates.
Although conceptually simple, gradient descent has several practical limitations, such
as sensitivity to the choice of 1 and the potential to get stuck in local minima or saddle
points in high-dimensional loss landscapes.

Fun fact: The conceptual foundation of gradient descent can be traced back
to Isaac Newton and Gottfried Wilhelm Leibniz in the seventeenth century.
While neither explicitly developed gradient descent as we know it today, their
pioneering work in calculus laid the groundwork for optimizing functions.
Leibniz’s fascination with finding maxima and minima in calculus inspired
later mathematicians to use derivatives to navigate optimization landscapes.

Variants of Gradient Descent

Batch Gradient Descent: In this approach, the gradients are computed using the
entire data set. Although this ensures a stable update direction, it can be computa-
tionally expensive for large data sets, as the entire data set must be processed for
each update.

Stochastic Gradient Descent (SGD): Instead of computing gradients on the entire
data set, SGD updates the parameters using a single data point (or a mini-batch) at
each step. This introduces noise into the updates, which can help escape local minima
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but may also lead to instability. The trade-off between computational efficiency and
convergence stability makes SGD a popular choice.

Mini-Batch Gradient Descent: Combining the benefits of batch and stochastic gra-
dient descent, mini-batch gradient descent computes gradients using small subsets
of the data. This strikes a balance between computational efficiency and stable con-
vergence, making it the most widely used variant in practice.

Advanced Optimization Algorithms

Although gradient descent and its variants provide a foundation for training, more
sophisticated algorithms improve convergence speed and accuracy by dynamically
adapting the learning process.

Momentum: Builds upon SGD by incorporating the idea of velocity into the param-
eter updates. Instead of relying solely on the current gradient, momentum considers
the accumulated gradients from previous steps. The update rule is as follows:
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where § is the momentum factor. This method helps smooth the optimization path
and accelerates convergence, particularly in regions with oscillatory gradients.

Adagrad: Adapts the learning rate for each parameter according to the historical
magnitude of its gradients. Parameters with frequently large gradients receive smaller
updates, whereas those with smaller gradients receive larger updates. This ensures
better handling of sparse data, but can lead to excessively small learning rates as
training progresses.

RMSprop: Addressing Adagrad’s problem of decreasing learning rate, RMSprop
normalizes the learning rate by the square root of an exponentially decaying average
of past squared gradients. This makes it suitable for nonstationary and large-scale
problems.
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Adam: The Adaptive Moment Estimation (Adam) algorithm combines momentum
and RMSprop to adapt the learning rates for each parameter. Adam maintains running
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averages of both the gradients and their squared values, enabling efficient and robust
updates.
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where m, and v, are bias-corrected estimates. Adam is widely used due to its ability
to handle sparse gradients and adapt to nonstationary objectives.

Regularization in Training Algorithms

To improve generalization and prevent overfitting, regularization techniques are often
incorporated into training algorithms. These include:

e Weight Decay (L2 Regularization): adds a penalty proportional to the squared
magnitude of the weights to the loss function.

e Dropout: randomly disables a subset of neurons during each iteration, forcing the
network to learn redundant representations.

e Batch Normalization: normalizes the inputs of each layer to stabilize training
and improve convergence.

Challenges and Trade-offs

Training algorithms must address challenges such as vanishing or exploding gradi-
ents, convergence to poor local minima, and computational efficiency. Choosing the
right algorithm often involves trade-offs between speed, robustness, and suitability
for the network architecture and data set size.

8.5 Evaluation Metrics

Evaluation metrics are essential tools for assessing the performance of neural net-
works and determining their ability to generalize beyond the training data. These
metrics provide quantitative measures of the accuracy, precision, and reliability of a
model, offering information on how well the network solves a given problem. The
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choice of evaluation metric depends on the task at hand, classification, regression,
clustering, or generative modeling, and must align with the specific objectives of the
application. This section discusses key evaluation metrics used in various machine
learning tasks, emphasizing their interpretation, advantages, and limitations.

Classification Metrics

In classification tasks, the goal is to assign input data to pre-defined categories. Sev-
eral metrics are commonly used to evaluate the performance of classifiers:

Accuracy is the ratio of correctly predicted instances to the total number of instances.
Although intuitive and easy to compute, accuracy may not be suitable for imbalanced
data sets, where one class dominates, as it can be misleadingly high even if the model
performs poorly on the minority class.

Precision, Recall, and F1-Score. These metrics are particularly useful in scenarios
with imbalanced data:

e Precision measures the proportion of true positive predictions among all positive
predictions.

e Recall (or Sensitivity) measures the proportion of true positive predictions among
all actual positive instances.

e F1-Score is the harmonic mean of precision and recall, balancing the trade-off
between the two.

These metrics are especially valuable in tasks like medical diagnosis, where false
negatives (missed detections) or false positives (false alarms) can have significant
consequences.

ROC-AUC (Receiver Operating Characteristic-Area Under Curve) plots the true
positive rate (TPR) against the false positive rate (FPR) at various thresholds.

The AUC (Area Under the Curve) measures the ability of the model to discriminate
between classes. A perfect classifier has an AUC of 1, while a random classifier has
an AUC of 0.5. This metric is particularly useful for comparing classifiers when the
decision threshold is flexible.

Logarithmic Loss (Log Loss) evaluates the confidence of probabilistic predictions.
It penalizes incorrect predictions based on the predicted probability assigned to the
correct class:



224 8 Neural Networks

1

c
Log Loss = ——
& N £t

> vijlog($ij). (8.7)

i=1 j=I1

Here, N is the number of instances, C is the number of classes, yij is a binary
indicator for the correct class, and y;; is the predicted probability. Lower log loss
indicates better performance.

Regression Metrics

Regression tasks involve predicting continuous values, and the evaluation metrics
focus on quantifying the deviation between predicted and actual values:

Mean Absolute Error (MAE) measures the average absolute difference between
predicted and actual values:
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MAE is robust to outliers, but does not penalize large errors as much as squared-error
metrics.

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE): MSE
computes the average of squared differences between predicted and actual values:
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RMSE is the square root of MSE, providing an error metric in the same units as the
target variable. Both metrics penalize large deviations more than small deviations,
making them sensitive to outliers.

R-Squared (Coefficient of Determination) measures the proportion of variance in
the target variable explained by the model:

SSres

R*=1- ,
SStot

(8.10)

where SSres is the residual sum of squares and SStot is the total sum of squares.
Higher values (closer to 1) indicate a better fit, but it can be misleading for non-
linear models or overfitting scenarios.
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Clustering Metrics

In unsupervised learning tasks such as clustering, evaluation metrics compare the
quality of group assignments or alignment with ground truth.

Silhouette Score measures how well each data point fits within its assigned cluster
relative to other clusters:
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where a (i) is the average intra-cluster distance and b (i) is the average nearest-cluster
distance. Scores range from —1 to 1, with higher values indicating better clustering.

Adjusted Rand Index (ARI) quantifies the similarity between predicted and true
cluster assignments, adjusting for random chance. It ranges from —1 (poor align-
ment) to 1 (perfect alignment).

Davies-Bouldin Index evaluates cluster compactness and separation. Lower values
indicate more distinct and well-separated clusters.

Generative Model Metrics

For generative models like GANs or VAEs, metrics evaluate the quality of generated
data relative to the training data:

Frechet Inception Distance (FID) compares the distribution of generated images to
real images using embeddings from a pre-trained network, such as Inception. Lower
FID indicates better alignment of distributions.

Perceptual Quality Metrics: Human perceptual scores or learned metrics (e.g.,
LPIPS) assess the visual similarity or realism of generated outputs.

Custom Metrics

In many applications, custom metrics are designed to reflect domain-specific objec-
tives. For example, in medical imaging, metrics like the Dice coefficient or the Jaccard
index assess the accuracy of image segmentations.
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Choosing the Right Metric

The selection of the appropriate evaluation metrics depends on the task, the char-
acteristics of the data, and the specific requirements of the application. The metrics
must align with the intended use of the model and account for trade-offs, such as pre-
cision vs. recall or sensitivity to outliers. Robust evaluation often combines multiple
metrics to provide a comprehensive performance assessment. Understanding these
metrics ensures reliable interpretation of results and facilitates informed decisions
when refining neural network models.

8.6 Deep Networks

Deep learning represents a transformative advancement in machine learning, char-
acterized by its ability to model complex hierarchical patterns in data through the
use of deep neural networks. Unlike traditional machine learning models, which
often rely on hand-engineered features, deep learning automates feature extraction
by learning multiple layers of representation directly from raw data. Each layer in a
deep neural network captures increasingly abstract features, enabling the network to
decompose complex problems into simpler, solvable components. This hierarchical
learning process has led to breakthroughs in fields such as computer vision, natural
language processing, speech recognition, and autonomous systems.

The “depth” of a neural network refers to the number of hidden layers it con-
tains. Although shallow networks typically have one or two hidden layers, deep
networks can consist of dozens or even hundreds of layers, each containing thou-
sands of interconnected neurons. These layers are often structured to extract features
progressively: The lower layers identify simple patterns such as edges or textures,
the intermediate layers capture complex patterns such as shapes or objects, and the
higher layers integrate these patterns into a holistic understanding of the input data.
This depth empowers deep networks to approximate highly non-linear functions and
solve problems that are infeasible for shallow architectures (Fig. 8.5).

The conceptual foundation of deep learning lies in its ability to generalize the
learning process to diverse and complex domains. This is achieved through the use
of advanced optimization techniques, non-linear activation functions, and large-scale
data sets. Deep networks leverage algorithms such as backpropagation to compute
gradients efficiently and optimization methods such as Adam or RMSprop to update
their parameters effectively. Regularization techniques, such as dropout and batch
normalization, help mitigate overfitting and improve the network’s ability to gener-
alize to unseen data.

A key enabler of deep learning has been the dramatic increase in computational
power, driven by advances in hardware such as GPUs and TPUs, and the availability of
large-scale annotated data sets. These developments have allowed researchers to train
and deploy deep networks for tasks that were previously considered intractable. For
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Fig. 8.5 Deep artificial neural network with hidden layers

example, convolutional neural networks (CNNs) have revolutionized image recog-
nition, achieving human-level performance in tasks such as object detection and
segmentation. Similarly, recurrent neural networks (RNNs) and their variants, such
as long short-term memory (LSTM) and gated recurrent units (GRU), have trans-
formed sequence modeling tasks such as language translation and speech synthesis.

The success of deep learning also comes from its versatility. By adapting the
architecture of a network to the specific requirements of a task, deep learning mod-
els can be applied across domains with minimal changes. For instance, generative
adversarial networks (GANs) have been used for image synthesis, data augmenta-
tion, and creative applications, while transformer-based architectures, such as BERT
and GPT, have redefined the state-of-the-art in natural language understanding.

Despite its remarkable achievements, deep learning is not without challenges.
Training deep networks often requires significant computational resources and large
amounts of labeled data. In addition, deep networks can be opaque, making their
decision-making processes difficult to interpret, raising concerns about trust and
transparency in critical applications like healthcare and finance. Furthermore, issues
such as overfitting, vanishing, or exploding gradients, and sensitivity to hyperparam-
eter selection necessitate careful model design and training.

Deep learning is not just a tool but a paradigm shift in artificial intelligence. Its
ability to learn directly from data, combined with its scalability and adaptability,
positions it as a cornerstone of modern Al research and applications. As the field
continues to evolve, innovations in architectures, optimization techniques, and com-
putational frameworks will further expand the boundaries of what deep learning can
achieve.
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Fun fact: One of the more whimsical moments in the history of deep net-
works occurred in 2012, when researchers at Google trained a deep neural
network on millions of unlabeled YouTube video frames. The system, a pre-
cursor to modern convolutional neural networks, learned to recognize objects,
including cats, without ever being explicitly told what a cat was.

This achievement, led by Andrew Ng and Jeff Dean, demonstrated the power
of unsupervised learning with deep architectures. The “cat video recognition”
experiment gained media attention and became a humorous but powerful
symbol of AI’s potential.”

¢ https://www.npr.org/2012/06/26/155792609/a-massive- google-network-learns-to-
identify.

Frameworks and Libraries

The rise of deep learning has been accompanied by the development of power-
ful frameworks and libraries that simplify the design, training, and deployment of
neural networks. These tools provide user-friendly abstractions, efficient computa-
tional backends, and extensive documentation, enabling researchers and practitioners
to focus on experimentation and application rather than low-level implementation
details. Frameworks and libraries for deep learning support a wide range of function-
alities, from building simple feedforward networks to designing complex architec-
tures for tasks like natural language processing, computer vision, and reinforcement
learning.

PyTorch

PyTorch, developed by the Facebook AI Research Lab—Meta Al, has gained pop-
ularity for its dynamic computation graph, which allows models to be defined and
modified on the fly. This feature makes PyTorch, especially suitable for research and
experimentation. Its Pythonic interface and strong community support have further
contributed to its widespread adoption. PyTorch supports seamless integration with
Python libraries such as NumPy and SciPy, enabling easy data manipulation. The
introduction of TorchScript and PyTorch Lightning has enhanced its capabilities for
production deployment and structured training, making it a versatile choice for both
research and production.
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TensorFlow

TensorFlow, developed by Google Brain, is one of the most widely used frameworks
for deep learning. Known for its flexibility and scalability, TensorFlow supports a
variety of neural network architectures and provides tools for deploying models on
diverse platforms, including CPUs, GPUs, and TPUs. It uses a computational graph
abstraction, where the nodes represent the operations and the edges represent the data
flow. TensorFlow’s high-level API, Keras, simplifies model building by providing an
intuitive interface for constructing and training networks. TensorFlow is particularly
valued in production environments, where its TensorFlow Serving and TensorFlow
Lite components facilitate model deployment on servers and edge devices.

Hugging Face Transformers

Hugging Face provides a specialized library for natural language processing (NLP)
that focuses on transformer-based models such as BERT, GPT, and T5. The library
offers pre-trained models, simplifying the fine-tuning process for downstream tasks
such as text classification, translation, and summarization. The integration of Hug-
ging Face with TensorFlow and PyTorch allows users to take advantage of the
strengths of both frameworks while benefiting from the library’s focus on NLP.

Keras

Initially, an independent library, Keras is now tightly integrated into TensorFlow as its
high-level API. Keras focuses on ease of use, modularity, and extensibility, making it
an excellent choice for beginners and rapid prototyping. Provides a straightforward
interface for defining neural network layers, specifying loss functions, and training
models. Keras abstracts much of the complexity of TensorFlow, allowing users to
build and train deep learning models with minimal code. Despite its simplicity,
Keras is powerful enough to support advanced tasks through custom layers and loss
functions.

Fastai

Fastai is a high-level library built on PyTorch that emphasizes ease of use and rapid
experimentation. Abstracts much of the boilerplate code involved in deep learning,
allowing users to focus on model design and evaluation. Fastai is particularly popular
for educational purposes and practical applications, offering utilities for tasks like
computer vision, text analysis, and tabular data processing.
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Specialized Libraries

OpenCYV (Open-Source Computer Vision Library): Provides tools for image pro-
cessing and computer vision tasks, often used alongside deep learning frameworks
for preprocessing and feature extraction.

Scikit-learn: While primarily a machine learning library, Scikit-learn seamlessly
integrates with deep learning frameworks, offering tools for data pre-processing,
model evaluation, and integration with simpler models.

TensorRT: NVIDIA’s TensorRT optimizes trained neural networks for deployment
on NVIDIA GPUgs, significantly improving inference speed.

Considerations for Framework Selection

The choice of framework depends on the specific requirements of the task, the
user’s familiarity with programming paradigms, and the intended deployment envi-
ronment. Research-oriented projects often favor PyTorch for its flexibility, while
production-focused applications may prefer TensorFlow for its robust deployment
ecosystem. Libraries like Hugging Face and Fastai cater to domain-specific needs,
further enhancing the versatility of deep learning.

Complementary Priors

The concept of complementary priors emerges in the context of deep learning and
probabilistic models, where it plays a critical role in addressing issues related to rep-
resentation learning, disentanglement, and optimization. At its core, complementary
priors refer to constraints or assumptions imposed on latent variables in probabilistic
models to mitigate problems such as overfitting, ambiguity, or redundancy in feature
representation. By guiding the model to prefer certain distributions or relationships
over others, complementary priors help to improve generalization, interpretability,
and efficiency.

Understanding Priors in Machine Learning

In probabilistic models, a priori represents the assumptions made about the distribu-
tion of a variable before observing any data. For example, in a Bayesian framework,
priors encapsulate beliefs about the parameters of a model, which are updated upon
observing evidence to form a posterior distribution. Priors are especially important in
deep learning models with latent variables, such as Variational Autoencoders (VAESs)
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or Bayesian Neural Networks, where they regulate the latent space by imposing prob-
abilistic constraints.

Complementary priors take this concept further by introducing priors that interact
with one another to encourage disentanglement or diversity among latent features.
This ensures that the learned latent variables capture distinct, non-overlapping aspects
of the data, reducing redundancy, and improving the quality of representation.

Complementary Priors in Deep Learning

In deep generative models such as VAEs, it is often assumed that latent variables z
follow a standard Gaussian distribution as a priori, p(z) = N (0, I). However, during
training, the posterior ¢(z|x) may deviate from this prior due to the attempt of the
model to fit the data. Without additional constraints, this can lead to issues such as
mode collapse, where different latent variables converge to similar representations,
reducing the effectiveness of the model.

Complementary priors address these challenges by imposing additional proba-
bilistic structures on the latent space. These structures may include the following:

Disentanglement: Encourage latent variables to capture independent factors of vari-
ation in the data. For example, in a model trained on images, one variable might rep-
resent object position while another represents color or size. Complementary priors
ensure that these factors are distinct and do not interfere with each other.
Regularization: Complementary priors can act as regularizers, penalizing deviations
from desired distributions. For instance, enforcing sparsity in latent variables ensures
that only a subset of variables is active for any given input, enhancing interpretability
and efficiency.

Consistency: Priors can enforce consistency between latent variables and observed
data, ensuring that latent representations align with domain-specific knowledge or
constraints.

Applications of Complementary Priors

Variational Autoencoders (VAEs): In VAEs, complementary priors are often used
to improve the disentanglement of latent variables. For example, §-VAE introduces
a weighting factor 8 to the KL divergence term in the loss function, effectively
strengthening the influence of the prior on the latent space. This encourages the
model to prioritize disentangled representations over perfect reconstruction.

Bayesian Neural Networks: In Bayesian neural networks, complementary priors
are used to regularize the distribution of weights, preventing overfitting and enabling
uncertainty estimation. These priors can incorporate domain knowledge or promote
sparsity to improve model robustness.
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Generative Adversarial Networks (GANs): Complementary priors can guide the
latent space of GANSs, ensuring that different latent variables correspond to distinct
and meaningful features of the generated data. This is particularly useful in condi-
tional GANs, where the latent space must align with specific input conditions.

Disentangled Representations: Complementary priors are critical in models
designed to learn interpretable and disentangled features. For example, in unsu-
pervised learning tasks, they ensure that latent variables capture independent aspects
of variation in the data, such as pose, lighting, or identity in image data sets.

Hierarchical Models: In hierarchical generative models, complementary priors can
define relationships between different levels of the latent hierarchy, ensuring that
higher-level variables capture global patterns, while lower-level variables focus on
local details.

Challenges and Considerations

Although complementary priors offer significant benefits, their design and imple-
mentation pose challenges:

Trade-offs: Imposing overly restrictive priors can hinder the flexibility of the model
and lead to underfitting, while insufficient constraints can result in entangled or
redundant representations.

Choice of Priors: Selecting appropriate complementary priors often requires domain
expertise and experimentation, as the effectiveness of a prior depends on the specific
data and task.

Computational Complexity: Imposing complementary priors, particularly in com-
plex models, can increase computational demands during training.

Conclusion

Complementary priors are a powerful mechanism for improving the performance and
interpretability of probabilistic and deep learning models. By imposing constraints
on the latent space, they ensure that the learned representations are disentangled,
meaningful, and aligned with the underlying structure of the data. As deep learn-
ing models continue to advance, complementary priors will remain a vital tool for
addressing challenges in representation learning and probabilistic modeling.
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8.7 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (DCNNs) are a specialized class of neural
networks designed to process and analyze structured data, particularly images and
spatial hierarchies. They have revolutionized fields such as computer vision, medical
imaging, and autonomous systems by achieving state-of-the-art performance in tasks
such as image classification, object detection, and semantic segmentation. DCNNs
extend the architecture of traditional neural networks by introducing convolutional
layers that extract local patterns from input data, pooling layers that reduce dimen-
sionality while preserving essential information, and fully connected layers that per-
form high-level reasoning and classification. These components work together to
enable DCNN:Ss to learn hierarchical representations, where early layers capture sim-
ple features such as edges, and deeper layers encode more complex structures such
as shapes and objects. Over the years, numerous architectures have been developed,
including LeNet, AlexNet, VGG, ResNet, and EfficientNet, each pushing the bound-
aries of accuracy and efficiency. This chapter provides an in-depth exploration of the
foundational components and common architectures of DCNNS, offering insights
into their design principles and practical applications.

Convolutional Layers

Convolutional layers are the cornerstone of Deep Convolutional Neural Networks
(DCNNs). They perform the convolution operation, which is the process of slid-
ing a filter (or kernel) over the input data to extract spatial features. This operation
enables convolutional layers to detect patterns such as edges, textures, and shapes
in images, which are fundamental to understanding higher-level structures in the
data. Unlike fully connected layers, which treat all input features equally, convo-
lutional layers exploit spatial hierarchies, allowing the network to learn localized
and translation-invariant features. This makes them highly effective for tasks such
as image recognition, object detection, and medical imaging.

The Convolution Operation

The convolution operation involves three main components:

1. Input: Typically a multidimensional tensor, such as a 2D image or a 3D video
frame. For a color image, the input has three channels (Red, Green, and Blue).

2. Kernel (Filter): A small matrix of learnable weights, often smaller than the input.
The common kernel sizes are 3 x 3,5 x 5, or 7 x 7. Each kernel is designed to
detect specific patterns in the input data.

3. Stride: The number of steps in which the kernel moves across the input during the
convolution operation. A larger stride results in a smaller output size and faster
computation, but may lose finer details.
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4. Padding: Additional border values are added to the input to control the spatial
dimensions of the output. Common types include:

5. Valid Padding: No padding, resulting in a smaller output.

6. Same Padding: Padding added to ensure that the output size matches the input
size.

The convolution operation computes the dot product between the kernel and the
overlapping region of the input. Mathematically, for an input X and a kernel K, the
output Y at a specific location is given by

Y. /) =YY XG+m, j+n) Km,n), (8.12)
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where m and n are the kernel indices.
Channels and Depth

In real-world applications, the input data often consists of multiple channels. For
example, an RGB image has three channels that correspond to red, green, and blue
intensities. Convolutional layers account for this by using a filter with the same depth
as the input. If the input has C channels and the kernel size is k x k, the kernel dimen-
sions will be k x k x C. Each kernel produces a single 2D output (or feature map),
and multiple kernels are applied to extract various features, resulting in an output
tensor with multiple feature maps.

Feature Maps and Activation

The output of a convolutional layer, often referred to as a feature map, captures the
responses of the input to the applied kernels. These feature maps are then passed
through an activation function to introduce non-linearity, allowing the network to
model complex patterns. The most common activation function used in convolutional
layers is the Rectified Linear Unit (ReLU), defined as f(x) = max(0, x).

ReLU ensures computational efficiency while addressing vanishing gradient prob-
lems during training.

Advantages of Convolutional Layers

1. Parameter Sharing: The same kernel is applied across the entire input, signifi-
cantly reducing the number of learnable parameters compared to fully connected
layers. This makes convolutional layers computationally efficient and less prone
to overfitting.

2. Sparsity of Connections: Each neuron in a convolutional layer connects to a small
localized region of the input (the receptive field). This focus on local patterns
allows the network to detect features at various spatial scales.
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3. Translation Invariance: By learning local patterns and applying them across the
entire input, convolutional layers make the network robust to small translations
and distortions in the input data.

Pooling Layers

Pooling layers are a key component of deep convolutional neural networks (DCNNGs),
which reduce the spatial dimensions of feature maps while retaining the most impor-
tant information. By summarizing local regions, pooling improves computational
efficiency, provides translation invariance, and mitigates overfitting. These layers
are interspersed between convolutional layers to progressively condense the spatial
representation, allowing for deeper network architectures without excessive compu-
tational overhead.

The most common pooling methods include max pooling, which selects the max-
imum value from a pooling window, and average pooling, which computes the mean
value. Max pooling emphasizes prominent features such as edges or textures, while
average pooling smooths representations and retains broader contextual information.
Global pooling, often used in architectures like ResNet, condenses the entire spatial
dimension into a single value per feature map, enabling a seamless transition to fully
connected layers.

Pooling parameters such as kernel size, stride, and padding control the dimen-
sionality reduction process. For example, a 2 x 2 kernel with a stride of 2 reduces
the size of the feature map by half in both dimensions. Although pooling is effective
in capturing high-level features, it can lead to the loss of fine-grained spatial details,
prompting the use of alternatives like strided convolutions or attention mechanisms
in modern architectures.

Despite these challenges, pooling remains integral to DCNNs for tasks such as
image classification, object detection, and semantic segmentation, where hierarchi-
cal feature extraction is essential. Tools like TensorFlow and PyTorch simplify the
implementation of a pooling layer, making them a staple in deep learning workflows.

Fully Connected Layers

Fully connected (FC) layers are a fundamental building block of neural networks,
including Deep Convolutional Neural Networks (DCNNs). Typically placed at the
end of a network, fully connected layers serve as the decision-making mechanism,
transforming the high-level features learned from the preceding convolutional and
pooling layers into final predictions. Unlike convolutional layers, which focus on
localized spatial patterns, fully connected layers treat all input features equally,
establishing dense connections between neurons. This dense connectivity enables
the network to combine spatially distributed features into a global representation,
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crucial for classification, regression, and other tasks that require holistic understand-
ing.

Structure of Fully Connected Layers

1. Input Representation:
Fully connected layers receive flattened inputs, typically feature maps from the
final convolutional or pooling layer. For example, a 7 x 7 x 512 feature map is
reshaped into a 1D vector with 7 - 7 - 512 = 25, 088 elements.

2. Neuron Connections:
Each neuron in an FC layer connects to every input feature, resulting in the weight
matrix W of dimensions n x m, where n is the number of input features and m
is the number of output neurons.

3. Forward Pass:
The layer computes the weighted sum of inputs, adds a bias term b, and applies
an activation function: y = f(Wx + b). Here, f(-) is the activation function,
commonly a ReLU, sigmoid, or softmax depending on the task.

4. Output Representation:
The output dimensions depend on the number of neurons in the layer. For instance,
the last FC layer in a classification network outputs probabilities over k classes
using a softmax activation.

Common Architectures

Deep convolutional neural networks (DCNNs) have undergone significant evolution
through the development of influential architectures that have shaped modern com-
puter vision. These architectures, including AlexNet, VGG, GoogLeNet, ResNet,
and others, introduced novel design strategies to address challenges such as vanish-
ing gradients, computational inefficiency, and the need for robust feature extraction.
Each architecture provided transformative insights that improved the depth, scala-
bility, and efficiency of neural networks.

AlexNet, one of the first major breakthroughs, demonstrated the power of deep
learning in large-scale image classification by utilizing GPUs for training, employing
ReLU activations and integrating dropout for regularization. It marked the beginning
of widespread adoption of deep networks in computer vision. VGG expanded on
this success by showing that deeper networks, constructed with uniform small con-
volutional kernels, could achieve better performance while maintaining a modular
design. This simplicity and scalability made VGG a widely adopted standard for
further experimentation.

GoogLeNet introduced the concept of multiscale feature extraction through the
Inception module, enabling the network to capture features at varying resolutions
while maintaining computational efficiency. It highlighted the importance of balanc-
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ing depth and efficiency in neural network design. ResNet addressed the problem of
vanishing gradients in deep networks by introducing residual connections, allowing
for training of extremely deep architectures. This innovation set a new benchmark for
image classification and inspired numerous extensions and variations in subsequent
models.

DenseNet built on the idea of residual connections by introducing dense con-
nectivity, where each layer is connected to all the preceding layers. This approach
improved feature reuse and gradient flow, leading to parameter-efficient architectures.
Lightweight models like MobileNet and EfficientNet further extended these princi-
ples by focusing on resource efficiency, employing techniques such as depthwise
separable convolutions and compound scaling to optimize performance for mobile
and embedded systems.

8.8 Recurrent Neural Networks

Recurrent neural networks (RNNs) constitute a specialized category of neural net-
works specifically engineered for the modeling of sequential and time-dependent
data. In contrast to feedforward networks, which process input in isolation, RNNs
integrate memory via recurrent connections, thereby enabling the retention and uti-
lization of information from prior inputs. This capability of capturing temporal
dependencies makes RNNs exceptionally effective for applications such as natu-
ral language processing, speech recognition, and time series analysis. Over time,
traditional RNNs have exhibited limitations, notably vanishing gradients and diffi-
culties in learning long-term dependencies, precipitating the development of more
advanced variants, namely long short-term memory (LSTM) networks and Gated
Recurrent Units (GRUs). These advances have considerably broadened the scope of
RNNs across a diverse array of sequence prediction tasks, including language mod-
eling, sentiment analysis, and dynamic system forecasting. This chapter examines
the fundamental concepts of RNNs, explores the architectures of LSTMs and GRU,
and emphasizes their applications in sequence prediction problems.

Basic RNN

Recurrent neural networks (RNNs) are a foundational architecture in deep learning,
designed to process sequential data by incorporating temporal dependencies into the
learning process. Unlike feedforward networks, where inputs are processed inde-
pendently, RNNs introduce recurrence by maintaining a hidden state that is updated
at each time step. This hidden state acts as a memory, capturing information about
previous inputs and allowing the network to model sequences in which the order of
inputs is critical.
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The architecture of an RNN involves a recurrent loop that connects the output of
a hidden layer back to its input in subsequent time steps. Mathematically, the hidden
state at time ¢, denoted /,, is calculated as a function of the current input x, and the
previous hidden state /,_;. This is expressed as:

hy = f(Wphi_y + Wex, + b), (8.13)

where W, and W, are weight matrices, b is a bias vector, and f is an activation
function, commonly a hyperbolic tangent (tanh) or sigmoid. The network output y,
at time 7 is typically derived from the hidden state:

e = g(Wyh, + ¢), (8.14)

where W, is the output weight matrix, ¢ is a bias vector, and g is often a softmax
function for classification tasks.

This recursive nature enables RNNs to maintain a temporal representation of
the data, making them suitable for applications involving sequences, such as time-
series forecasting, natural language processing, and speech recognition. However,
this same recursion presents challenges during training. One significant issue is the
vanishing-gradient problem, where the gradients of the loss function with respect to
earlier time steps diminish exponentially as backpropagation progresses through the
sequence. This makes it difficult for basic RNNs to learn long-term dependencies,
as the influence of earlier inputs on later output becomes negligible. In contrast,
exploding gradients, although less common, can cause instability during training.

Despite these limitations, basic RNNs provide a simple and elegant framework
for modeling sequential data. They serve as the foundation for more advanced archi-
tectures, such as long short-term memory (LSTM) networks and gated recurring
units (GRUs), which incorporate mechanisms to mitigate the challenges of training
in long sequences. Basic RNNs remain an important theoretical construct and are
still effective for tasks with short-term dependencies and modest sequence lengths.
They also provide valuable insights into the interplay between network architecture
and the temporal nature of data, laying the groundwork for the development of more
sophisticated recurrent models.

Example 2 (RNN classification)

This code implements a simple RNN-based neural network using the Keras library
to classify handwritten digits from the MNIST data set. It loads the MNIST data,
reshapes them into sequences of 28 time steps with 28 features (suitable for RNN
input), and normalizes pixel values to the range [0, 1].

The model consists of a SimpleRNN layer with 128 units, followed by a Dense
layer with 10 units for output (corresponding to the 10 digit classes) and a softmax
activation for classification. The network is compiled using categorical cross-
entropy loss, the Adam optimizer, and accuracy as the evaluation metric. It trains
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for 10 epochs with a batch size of 128 and evaluates the model on the test data set,
returning the loss and accuracy.

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Activation, SimpleRNN
from keras.utils import to_categorical, plot_model
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

3 x_train = np.reshape(x_train,[-1, 28, 28])

x_test = np.reshape(x_test,[—1, 28, 28])

x_train = x_train.astype(’float32’) / 255
x_test = x_test.astype(’float32’) / 255

network = Sequential ()

network.add (SimpleRNN (units=128,
input_shape=(28, 28)))

network.add (Dense (10))

network.add (Activation(’softmax’))

network.summary ()

network.compile(loss=’categorical_crossentropy’, optimizer=’adam’, metrics
=[’accuracy’])
network.fit (x_train, y_train, epochs=10, batch_size=128)

loss, acc = network.evaluate(x_test, y_test, batch_size=128)

Listing 8.2 Keras implementation of RNN classification of MNIST data set

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent
Neural Network (RNN) designed to address the limitations of basic RNNs, particu-
larly the vanishing gradient problem. Introduced by Hochreiter and Schmidhuber in
1997 [4], LSTMs enable effective modeling of long-term dependencies in sequential
data by incorporating a memory cell and a system of gates that regulate the flow
of information. These innovations allow LSTMs to retain and update information
over extended sequences, making them particularly suitable for tasks such as natural
language processing, time series forecasting, and speech recognition.

The core of an LSTM is its memory cell, which acts as a persistent storage
mechanism, preserving information over arbitrary time intervals. This memory is
modulated by three gates: the input gate, the forget gate, and the output gate. Each
gate performs a distinct function and is controlled by readable parameters. The input
gate determines to what extent new information is allowed to enter the memory
cell, while the forget gate decides what portion of the existing memory should be
discarded. The output gate controls how much of the memory is revealed to the
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current output and subsequent computations. These gates operate through sigmoid
activation functions, which produce outputs in the range of zero to one, enabling the
network to weigh the influence of different components of the input and memory.

Mathematically, the operation of an LSTM can be described by a series of equa-
tions. At each time step ¢, the forget gate computes a forget vector f; based on the
previous hidden state 4;_; and the current input x;:

fi=aWg-[hi_1,x]+by), (8.13)

where Wy and by are the weight matrix and the bias vector, respectively, and o is
the activation function of the sigmoid. Similarly, the input gate generates an input
vector i;:

ir =0 (Wi [hi—1, x]+ by). (8.16)

A candidate memory update Ct is computed using a hyperbolic tangent activation
function:

Ct = tanh(W, - [ht — 1, x,] + bo). (8.17)

The current memory cell state C, is then updated as a weighted combination of the
previous memory state Ct — 1 and the candidate update:

C,=fi0C_+i0Ct, (8.18)

where O represents the multiplication in elements. Finally, the output gate determines
the hidden state &, which is also the output of the LSTM for this time step:

(0 =0 (W, - [ht — 1, x;]1 + bo),

(8.19)
(h; = 0, ® tanh(C,).
This gating mechanism gives LSTMs the flexibility to learn when to store, update,
or retrieve information, effectively mitigating the vanishing gradient problem that
hinders traditional RNNs. The design enables LSTMs to focus on long-term depen-
dencies while retaining the capability to adapt to short-term changes.

LSTMs have proven to be highly effective in a wide range of sequence modeling
tasks. In natural language processing, they are frequently used for language mod-
eling, machine translation, and sentiment analysis. Their ability to model temporal
dependencies has also made them a cornerstone in speech recognition and audio
processing applications. In time series forecasting, LSTMs excel at predicting future
values based on historical data, demonstrating their adaptability across domains.

Although LSTMs address many limitations of basic RNNs, they are computation-
ally intensive because of their complex gating mechanisms. Training LSTMs on large
data sets or long sequences can be resource-heavy, often necessitating optimization
techniques such as gradient clipping or the use of specialized hardware like GPUs.
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Despite these challenges, LSTMs remain a dominant architecture for sequential data
processing, and their design has inspired numerous extensions and variants, including
gated recurring units (GRUs) and attention-based models. The principles underly-
ing LSTMs continue to influence the development of more advanced architectures,
underscoring their foundational role in deep learning.

Fun fact: In the early 2010s, the rise of graphics processing units (GPUs)
finally gave LSTMs the computational power they needed to shine. GPUs
enabled researchers to train larger models on more extensive data sets, and
LSTMs became a core component of applications in natural language pro-
cessing, machine translation, and video analysis.

A fun anecdote from this period involves Andrej Karpathy, a prominent Al
researcher, who used LSTMs to train a character-level language model on
the text of Shakespeare’s works. The LSTM learned to generate text that
mimicked Shakespeare’s style, albeit hilariously nonsensical at times. For
example:

“Prithee, I shall with my heart, sir, and your friends”.”

¢ https://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Gated Recurrent Units (GRU)

Gated Recurrent Units (GRUs) are a simplified variant of long short-term memory
(LSTM) networks, introduced by Cho et al. in 2014 [5]. GRUs aim to address the
challenges of modeling sequential data, particularly long-term dependencies, while
reducing the computational complexity inherent in LSTMs. By streamlining the
architecture, GRUs retain the ability to capture temporal patterns effectively but
require fewer parameters and less computational overhead. This balance makes GRUs
apractical choice for many sequence-based tasks in natural language processing, time
series analysis, and speech recognition.

The design of a GRU incorporates two primary gates: the update gate and the
reset gate. These gates work together to regulate the flow of information through the
network, determining which information to retain, update, or discard. The update
gate controls how much of the previous hidden state is carried forward to the current
state, balancing the preservation of long-term dependencies with the incorporation
of new input. The reset gate determines to what extent the previous hidden state
contributes to the generation of candidate activation for the current time step. This
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mechanism enables GRUs to adapt flexibly to short- and long-term dependencies in
the input sequence.

Mathematically, the update gate z, is computed as a function of the current input
x; and the previous hidden state &;_;:

2 =0 (W, [hi—1, ]+ b2), (8.20)

where W, is the weight matrix, b, is the bias vector and o denotes the activation
function of the sigmoid. The reset gate r, is similarly calculated:

re =0 W, - [hi—1, x: ]+ by). (8.21)

Using the reset gate, a candidate hidden state ht is generated, which represents the
contribution of the current input to the state:

ht = tanh(Wy, - [r; © ht — 1, x,] + by), (8.22)

where © denotes element-wise multiplication, and tanh is the hyperbolic tangent
activation function. The final hidden state /, for the current time step is then computed
as a weighted combination of the previous hidden state and the candidate hidden state,
mediated by the update gate:

hi=(0—2)0ht —1+4+z0Oh,. (8.23)

This architecture simplifies the memory cell and gating mechanisms found in
LSTMs by combining their roles into fewer components. The absence of a separate
memory cell reduces the number of parameters, making GRUs computationally more
efficient while retaining comparable performance. The gating mechanisms enable
GRUs to adaptively control the influence of past states, providing robustness in
learning both short- and long-term dependencies.

GRUs have shown efficacy across a wide range of applications. In natural lan-
guage processing, they are widely used for tasks such as machine translation, text
generation, and language modeling. Their ability to process sequential data effi-
ciently makes them suitable for real-time applications, including speech recognition
and streaming data analysis. GRUs are also prevalent in time-series forecasting,
where reduced computational requirements allow faster training on large data sets
or deployment on resource-constrained devices.

Although GRUs share many advantages with LSTMs, their streamlined design
may make them less expressive in some scenarios, particularly when intricate long-
term dependencies need to be modeled. However, their computational efficiency
and ease of implementation have made them a popular choice for many practical
applications, particularly in cases where computational resources are limited or where
training speed is a priority.
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8.9 Advanced Training Techniques

Training deep neural networks effectively requires strategies to improve generaliza-
tion, mitigate overfitting, and ensure efficient convergence. Advanced training tech-
niques, such as dropout, batch normalization, and data augmentation, have become
integral components of modern deep learning workflows. These techniques address
challenges in optimization and model robustness by altering network behavior dur-
ing training or preprocessing input data. Their use has contributed to significant
advancements in the performance and reliability of neural networks in a wide range
of applications.

Dropout is a regularization technique designed to reduce overfitting by randomly
deactivating a subset of neurons during training. By preventing specific units from
relying heavily on their neighboring activations, dropout encourages the network
to learn redundant representations and fosters a more distributed encoding of fea-
tures. The technique introduces stochasticity into the training process, as neurons are
dropped out independently with a predefined probability. During inference, dropout
is deactivated, and the network uses the full set of weights, appropriately scaled
to account for the absence of dropped units during training. This mechanism has
proven particularly effective in reducing overfitting in large networks and improving
generalization to unseen data.

Batch normalization addresses the issue of internal covariate shift, where the dis-
tribution of inputs to a layer changes as the model parameters update during training.
This phenomenon can slow convergence and make optimization challenging, par-
ticularly in deep networks. Batch normalization normalizes the activations of each
layer by adjusting and scaling them to a standard distribution, based on the statistics
of mini-batches during training. This normalization is followed by learnable param-
eters that allow the model to scale and shift the normalized values as necessary. By
stabilizing the input distributions of intermediate layers, batch normalization enables
the use of higher learning rates, accelerates convergence, and reduces the sensitivity
to initialization. Additionally, it has a mild regularization effect by introducing noise
from mini-batch statistics, which can further improve generalization.

Data augmentation is a pre-processing strategy that enhances the diversity of
training data by applying transformations to existing samples. These transforma-
tions, such as rotations, translations, cropping, flipping, or color jittering, simulate
variations that might be encountered in real-world scenarios. Data augmentation
allows the network to learn robust and invariant features without requiring additional
data collection. In image recognition tasks, augmentation techniques such as random
cropping and horizontal flipping have been particularly impactful, while in natural
language processing, methods like synonym replacement and back-translation have
proven useful. Augmentation not only increases the effective size of the training data
set but also helps reduce overfitting by discouraging the network from memorizing
specific data patterns.

These advanced training techniques often complement each other, collectively
addressing the multifaceted challenges of deep learning. Dropout and batch nor-



244 8 Neural Networks

malization operate directly on the network architecture, modifying the behavior of
activations and weight updates to enhance learning dynamics. In contrast, data aug-
mentation enriches the input data itself, expanding the variability of the training
set and helping the model generalize across diverse input distributions. Together,
they represent a toolkit for optimizing training processes, fostering robust feature
learning, and achieving superior performance in complex deep learning tasks.

8.10 Network Architectures

The evolution of deep learning has been driven by the development of diverse net-
work architectures, each tailored to address specific challenges and applications.
These architectures go beyond traditional feedforward and convolutional designs,
introducing novel mechanisms to process complex data types, enhance representa-
tional power, and generate new insights across domains. From the multiscale feature
extraction of Inception networks to the representation learning capabilities of autoen-
coders and the dynamic attention mechanisms in Attention Networks, these models
have redefined what neural networks can achieve. Generative Adversarial Networks
(GANSs) have opened new frontiers in content creation, while Graph Neural Net-
works (GNNs) have extended deep learning to non-Euclidean data structures like
social networks and molecular graphs. Hybrid architectures combine the strengths
of multiple models, creating versatile solutions for intricate tasks. Emerging trends
in architecture design continue to push boundaries, integrating advances such as
self-supervision, sparsity, and neuromorphic computing. This chapter explores the
principles and innovations behind these architectures, highlighting their transforma-
tive impact on deep learning and their growing role in shaping research and real-world
applications.

Inception

The Inception architecture, introduced by Szegedy et al. [6], represents a major
innovation in convolutional neural network design. Its primary contribution lies in the
Inception module, a carefully engineered structure that enables multi-scale feature
extraction within a single layer. By allowing the network to capture information
at varying levels of abstraction, the Inception architecture balances computational
efficiency with representational power, making it a versatile choice for complex tasks
such as image classification and object detection.

An Inception module integrates parallel convolutional paths with varying kernel
sizes. This design enables the module to simultaneously extract local features using
smaller kernels, suchas 1 x 1 and 3 x 3, and capture broader context with larger ker-
nels, suchas 5 x 5. Tomanage computational costs, 1 x 1 convolutions are employed
for dimensionality reduction, compressing feature maps before applying more com-
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putationally intensive operations. The pooling layers are also incorporated within the
module to enhance the robustness and provide additional abstraction. By combining
these parallel operations, the Inception module produces a rich set of feature maps
that represent different levels of spatial hierarchy.

The original Inception architecture, often referred to as GooglLeNet, demonstrated
the utility of this approach by achieving state-of-the-art results in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) while using significantly fewer
parameters than earlier deep networks like VGG. The success of GoogLeNet spurred
further development, leading to improved variants of the Inception architecture.
Inception-v3 introduced several enhancements, including factorized convolutions
that decompose larger kernels into successive smaller ones, such as splittinga 5 x 5
convolution into two 3 x 3 convolutions. This adjustment improved both compu-
tational efficiency and model performance. Inception-v3 also integrated batch nor-
malization into the auxiliary classifiers, stabilizing training, and further enhancing
generalization.

Inception-v4 and its related architecture, Inception-ResNet, continued this trajec-
tory by combining the strengths of the Inception module with residual connections.
Residual connections, introduced in ResNet, alleviate the problem of vanishing gra-
dients in very deep networks by enabling shortcut paths for gradient flow. The inte-
gration of these connections into the Inception framework facilitated the training of
deeper and more expressive models, extending their applicability to a wider range
of tasks.

The modular design of inception networks has contributed significantly to their
flexibility and scalability. These networks can be customized to specific applica-
tions by varying the number and configuration of Inception modules. Their success
has inspired adaptations in domains beyond image classification, including medical
imaging, video analysis, and multi-modal data processing. The architecture exempli-
fies the power of combining multi-scale feature extraction with computational effi-
ciency, serving as a blueprint for subsequent innovations in neural network design.
By addressing key challenges in deep learning, such as overfitting and computa-
tional constraints, the Inception architecture and its variants remain influential in
both research and practical applications.

Example 3 (Inception network)

This code implements a Convolutional Neural Network (CNN) using Keras to
classify images from the CIFAR-10 data set. The CIFAR-10 data are loaded, nor-
malized to the range [0, 1], and encoded with a hot digit for the 10 output classes.

The model consists of several Conv2D layers with 64 filters and different kernel
sizes (1x1,3x3, 5x5), followed by a MaxPooling2D layer for downsampling.
After further convolution, the output is flattened and passed through a Dense layer
with 10 units and a softmax activation function for classification.

The network is compiled using the SGD optimizer with momentum, learning rate
decay, and categorical cross-entropy loss. It trains for 10 epochs with a batch size of
32, using the test data for validation, and prints the network summary, including its
structure and parameter count.
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from keras.datasets import cifaril0

from keras.utils import np_utils

from keras.layers import Input

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Flatten, Dense

from keras.models import Model

from keras.optimizers import SGD

(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = X_train.astype(’float32’)

X_test = X_test.astype(’float32’)

X_train = X_train / 255.0

X_test = X_test / 255.0

y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)

network = Sequential ()

network.add (Input (shape = (32, 32, 3)))

> network.add(Conv2D (64, (1,1), padding=’same’, activation=’relu’))

3 network.add(Conv2D (64, (3,3), padding=’same’, activation=’relu’))
network.add(Conv2D (64, (1,1), padding=’same’, activation=’relu’))

network.add(Conv2D (64, (5,5), padding=’same’, activation=’relu’))

network.add (MaxPooling2D ((3,3), strides=(1,1), padding=’same’))

network.add (Conv2D (64, (1,1), padding=’same’, activation=’relu’))

network.add (Flatten())

network.add (Dense (10, activation=’softmax’))

network.summary ()

sgd = SGD(1lr=0.01, momentum=0.9, decay=0.001, nesterov=False)

network.compile(loss=’categorical_crossentropy’, optimizer=sgd,

metrics=[’accuracy’])

network.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10,
batch_size=32)

Listing 8.3 Inception network classification on Cifar10 data set

Autoencoders

Autoencoders are a class of neural networks designed to learn efficient represen-
tations of input data through an unsupervised learning paradigm. They consist of
two main components: an encoder and a decoder. The encoder maps the input data
to a lower-dimensional latent space, capturing its most salient features, while the
decoder reconstructs the input from this compressed representation. The reconstruc-
tion process ensures that the latent space retains the critical information necessary
to represent the input, making autoencoders particularly effective for tasks such as
dimensionality reduction, feature extraction, and generative modeling.

The simplest form, often referred to as a vanilla autoencoder, uses fully connected
layers for both the encoder and decoder. During training, the network minimizes
a reconstruction loss, typically the mean squared error between the input and its
reconstruction. The encoder compresses the input into a latent vector of reduced
dimensionality, and the decoder learns to map this latent vector back to the original
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input space. This structure forces the autoencoder to focus on the most important
patterns in the data while discarding irrelevant noise. Despite their simplicity, vanilla
autoencoders provide valuable insights into data structure and serve as a foundation
for more complex variants.

Variational Autoencoders (VAEs) extend the vanilla architecture by incorporat-
ing probabilistic principles into the learning process. Instead of mapping inputs to a
deterministic latent vector, VAEs encode them as a distribution, typically modeled
as a Gaussian. This allows VAEs to generate new data samples by sampling from the
learned latent space, making them powerful tools for generative modeling. During
training, VAEs optimize a combined loss function that includes both reconstruction
loss and a regularization term, derived from the Kullback-Leibler divergence, to
ensure that the learned distribution approximates the prior distribution. This proba-
bilistic framework enables VAEs to capture complex data distributions and generate
realistic, diverse outputs.

Autoencoders have found extensive applications across a range of domains. In
denoising tasks, they are trained to reconstruct clean data from corrupted inputs,
effectively learning to filter out noise while preserving essential features. This capa-
bility is widely used in image processing, where autoencoders restore degraded
images or enhance their quality. In anomaly detection, autoencoders excel by learning
a compact representation of normal data patterns during training. When presented
with anomalous data, the reconstruction error typically increases, providing a clear
signal for detection. This approach has been applied in areas such as fraud detection,
industrial monitoring, and medical diagnostics.

The versatility of autoencoders extends to other domains, including natural lan-
guage processing, where they have been used for tasks such as text compression
and feature extraction. Their ability to model complex data distributions has also
made them integral components in hybrid architectures, such as combining VAEs
with adversarial networks to create more robust generative models. Autoencoders
continue to play a significant role in advancing machine learning, offering a blend
of theoretical elegance and practical utility that has influenced the design of modern
neural networks. Their applications highlight their capacity to extract meaningful
structure from data, making them indispensable in the broader field of representation
learning.

Attention Networks

Attention networks represent a paradigm shift in deep learning, providing a mech-
anism to dynamically focus on relevant parts of input data while processing it.
The attention mechanism was first introduced to address challenges in sequence-
to-sequence models, particularly in tasks like machine translation. By allowing the
model to selectively weigh the importance of different input elements, attention
networks overcome the limitations of fixed-length representations and improve the
capacity to model long-range dependencies.
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At the core of the attention mechanism is the concept of assigning importance
weights to elements of the input sequence. These weights are computed based on the
relationship between the query, key, and value representations of the input data. The
query identifies what the model seeks to focus on, the key helps evaluate relevance,
and the value represents the information associated with each input element. The
attention weights are computed by taking the compatibility score between the query
and key representations, often using a dot product or other similarity measures,
followed by a softmax function to ensure the weights sum to one. The resulting
weighted combination of values serves as the attention output, enabling the model
to aggregate relevant information dynamically.

The Transformer architecture, introduced by Vaswani et al., builds on the attention
mechanism to create a highly efficient and scalable model for processing sequential
data. Transformers replace recurrent computations with self-attention, where each
element of the input attends to every other element in the sequence. This design
enables parallel processing, significantly reducing training time compared to recur-
rent networks. The key innovation of the Transformer lies in its multi-head attention
mechanism, which allows the model to focus on different parts of the sequence
simultaneously. By combining multiple attention heads, the Transformer captures
diverse patterns and dependencies in the data. Additionally, positional encodings
are incorporated to inject information about the order of elements in the sequence,
compensating for the lack of recurrence.

Applications of attention networks, particularly Transformers, have transformed
natural language processing (NLP). Tasks such as machine translation, text summa-
rization, and sentiment analysis have seen substantial performance improvements
due to the ability of attention mechanisms to capture complex syntactic and seman-
tic relationships in text. Pre-trained models like BERT, GPT, and TS5, based on the
Transformer architecture, have set new benchmarks in NLP by leveraging large-scale
unsupervised learning to produce contextualized word representations. These mod-
els generalize well across tasks through fine-tuning, enabling efficient adaptation to
specific applications.

The versatility of attention networks extends beyond NLP to domains such as com-
puter vision and speech processing. In vision, attention mechanisms are employed to
identify regions of interest in images, improving tasks like object detection and image
captioning. In speech, attention facilitates alignment between input features and out-
put targets, enhancing models for speech recognition and synthesis. The conceptual
simplicity and effectiveness of attention have made it a cornerstone of modern deep
learning, driving innovations across disciplines and shaping the future of artificial
intelligence.

Generative Adversarial Networks

Generative Adversarial Networks (GANs), introduced by Goodfellow et al., repre-
sent a powerful framework for generative modeling. GANs consist of two neural
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networks, a generator and a discriminator, that are trained simultaneously in a com-
petitive setting. The generator learns to produce data samples resembling the train-
ing data, while the discriminator attempts to distinguish between real and generated
samples. This adversarial process leads to the refinement of the generator’s output,
enabling the creation of realistic data samples across various domains.

The architecture of GANs revolves around the interplay between the generator and
the discriminator. The generator starts with a random input, often a vector sampled
from a latent space, and maps it to the data space using a series of transformations.
Its objective is to produce outputs that are indistinguishable from the real data.
The discriminator, on the other hand, evaluates inputs to classify them as real or
fake, providing feedback to the generator. This feedback, encoded as the gradients
of the loss function, guides the generator in improving its output over successive
iterations. The training process is framed as a minimax optimization problem, where
the generator seeks to minimize the discriminator’s ability to identify fake samples
while the discriminator maximizes its classification accuracy.

Variants of GANs have emerged to address challenges in the original formulation
and expand their applicability. Deep Convolutional GANs (DCGANSs) introduced
convolutional architectures into both the generator and discriminator, enhancing
the ability to model high-dimensional data, particularly images. Wasserstein GANs
(WGANS) redefined the loss function using the Earth Mover’s distance, improving
training stability and addressing issues of vanishing gradients. Other adaptations,
such as Conditional GANs (CGANSs), allow the generation of data conditioned on
specific inputs, enabling controlled synthesis in tasks like image-to-image translation
and text-to-image generation (Fig. 8.6).

GAN applications span a wide range of fields, with significant contributions in
image generation, style transfer, and data augmentation. In image generation, GANs
have achieved remarkable success in creating realistic faces, landscapes, and other
complex visual content. Style transfer leverages GANS to transform images by com-
bining content from one domain with the stylistic elements of another, resulting in
visually compelling output. In data augmentation, GANs generate synthetic training
data to enrich data sets for tasks where data collection is limited or costly. Beyond
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Fig. 8.6 Generative adversarial networks architecture (by Janosh Riebesell, see: https://tikz.net/
gan/)
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these applications, GANs have been used in video generation, 3D modeling, and
even molecular design, demonstrating their versatility.

The impact of GANs extends beyond their immediate applications and influences
the broader field of generative modeling. Despite challenges such as mode collapse
and training instability, ongoing research continues to refine GAN architectures and
training techniques, improving their robustness and scalability. GANs remain a cor-
nerstone of modern machine learning, bridge the gap between data generation and
real-world creativity, and their influence is likely to grow as new innovations emerge.

Fun fact: GANs were introduced in 2014 by Ian Goodfellow during a pivotal
moment in machine learning history. The story goes that the idea for GANs
came to Goodfellow during a late-night conversation at a bar with colleagues.
They were discussing ways to improve generative models, and Goodfellow
proposed the adversarial setup: a generator creating data and a discriminator
evaluating it.

Inspired, Goodfellow reportedly left the bar, went home, and coded the first
version of GANs. Within days, he had a working prototype that demonstrated
the potential of this new framework. This informal and almost spontaneous
moment gave birth to one of the most influential ideas in modern AL¢

¢ https://www.deeplearning.ai/the-batch/ian-goodfellow-a-man-a-plan-a-gan/.

Graph Neural Networks

Graph Neural Networks (GNN5s) are a class of neural networks specifically designed
to process data represented as graphs, where entities are modeled as nodes, and their
relationships are expressed as edges. Unlike traditional deep learning models that
operate on grid-like data structures such as images or sequences, GNNs generalize to
non-Euclidean domains, making them suitable for a wide range of applications where
data is inherently relational. By leveraging the structure of graphs, GNNs effectively
capture both the features of individual nodes and the dependencies among them.
Graphs are mathematical structures that consist of a set of nodes and edges. In a
graph representation, each node is associated with a feature vector that encapsulates
its attributes, while edges often carry weights or labels representing the strength
or type of the relationship. The adjacency matrix is a common representation of a
graph, encoding the connections between nodes. GNNs extend this representation by
learning embeddings for nodes and edges, which are updated iteratively to capture
local and global graph structures. This process allows GNNSs to encode the topology
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of the graph alongside node and edge attributes, creating representations that are
suitable for downstream tasks.

A pivotal advancement in GNNs is the development of Graph Convolutional
Networks (GCNs), which generalize the convolution operation from grid-like data
to graphs. GCNs aggregate features from a node’s neighborhood to compute an
updated representation for the node. This operation can be viewed as a form of
message passing, where information is exchanged between connected nodes to refine
their embeddings. Mathematically, the aggregation process is often expressed as a
weighted sum of the features of neighboring nodes, scaled by the adjacency matrix
and normalized to account for variations in neighborhood size. Multiple layers of
graph convolutions allow the network to propagate information across larger portions
of the graph, enabling the modeling of both local and global dependencies.

Applications of GNNs span diverse fields where graph-structured data plays a
central role. In social networks, GNNs are used to predict user behavior, recom-
mend connections, and detect communities by analyzing patterns of interaction. In
molecular analysis, they model chemical compounds as graphs, with atoms as nodes
and bonds as edges, enabling tasks such as molecular property prediction and drug
discovery. Beyond these domains, GNNs are employed in knowledge graphs for rea-
soning, in transportation networks for route optimization, and in cybersecurity for
anomaly detection within network traffic.

GNNs represent a significant step forward in machine learning, allowing the
effective use of graph-based data across disciplines. While challenges remain, such
as scaling to large graphs and preserving computational efficiency, ongoing research
continues to refine GNN architectures and extend their capabilities. By integrating
the relational structure of data into the learning process, GNNs have opened new
frontiers in fields ranging from natural sciences to social analysis, underscoring their
transformative potential.

Hybrid Architectures

Hybrid architectures represent a sophisticated approach in deep learning, combining
the strengths of different neural network paradigms to address complex tasks that
cannot be effectively handled by a single type of network. These architectures inte-
grate components such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) or fuse neural networks with symbolic reasoning frame-
works, enabling enhanced representational power, interpretability, and generalization
across diverse domains.

The combination of CNNs and RNNs is a prominent hybrid approach that lever-
ages the complementary strengths of these architectures. CNNs excel at extracting
spatial hierarchies from grid-like data such as images, capturing features ranging
from edges and textures to high-level object representations. RNNs, on the other
hand, are designed for sequential data, modeling temporal dependencies and contex-
tual relationships. By integrating these two architectures, hybrid models can process
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spatio-temporal data effectively. For example, in video analysis, CNNs extract spa-
tial features from individual frames, while RNNs process these features sequentially
to capture temporal dynamics, enabling tasks such as activity recognition and video
captioning. Similarly, in medical imaging, CNNs analyze spatial patterns within
scans, and RNNs aggregate these features over time to detect temporal trends in
patient data.

Another significant direction in hybrid architectures is neuro-symbolic integra-
tion, which seeks to combine the representational power of neural networks with the
logical reasoning capabilities of symbolic systems. Neural networks are well-suited
for learning from raw, unstructured data, capturing implicit patterns and represen-
tations. However, they often struggle with tasks requiring explicit reasoning, such
as rule-based decision-making or understanding relationships in structured domains.
Symbolic systems, in contrast, excel at encoding and manipulating explicit knowl-
edge but lack the ability to learn from data. Neuro-symbolic architectures bridge this
gap by integrating neural networks for perception and representation learning with
symbolic reasoning components for decision-making and inference. These systems
have shown promise in applications such as knowledge graph reasoning, visual ques-
tion answering, and robotic planning, where both perception and logical reasoning
are critical.

Hybrid architectures provide a pathway for addressing challenges that traditional
architectures cannot resolve independently. By combining different paradigms, they
enable the modeling of multi-faceted problems, incorporating spatial, temporal, and
logical components into a unified framework. This integration not only enhances task
performance but also opens new avenues for research, such as explainable Al, where
neuro-symbolic systems can offer insights into the reasoning processes underly-
ing neural network predictions. The development of hybrid architectures reflects the
broader evolution of artificial intelligence, emphasizing the need for diverse, interdis-
ciplinary approaches to tackle complex, real-world challenges. These architectures
are increasingly seen as a cornerstone for advancing both theoretical understanding
and practical applications of machine learning.

Emerging Trends and Research

The field of deep learning continues to evolve rapidly, driven by innovative research
and emerging trends that seek to address its limitations and expand its applicabil-
ity. Among the most prominent areas of advancement are few-shot learning, meta-
learning, and explainable Al, each representing a critical step toward creating more
efficient, generalizable, and interpretable models. These directions aim to overcome
challenges such as data scarcity, model adaptability, and the opacity of complex
neural networks.

Few-shot learning focuses on enabling models to generalize from a limited number
of training examples, addressing the reliance of traditional deep learning methods
on large labeled data sets. This paradigm seeks to mimic human learning, where
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individuals can acquire new skills or recognize novel concepts from minimal expo-
sure. Few-shot learning often employs techniques such as metric learning, where
models are trained to compare inputs and infer similarities, or generative approaches,
which synthesize additional data to augment learning. Applications span from med-
ical diagnostics, where annotated data is scarce, to natural language processing tasks
like machine translation for low-resource languages. By reducing the dependency
on extensive data sets, few-shot learning holds significant promise for democratizing
access to deep learning across domains with limited data availability.

Meta-learning, or learning to learn, represents another frontier in emerging
research. Meta-learning frameworks aim to train models that can rapidly adapt to
new tasks with minimal fine-tuning. This adaptability is achieved by optimizing
over distributions of tasks rather than individual tasks, enabling models to extract
shared knowledge and apply it efficiently to unseen scenarios. Meta-learning algo-
rithms often operate at multiple levels, with one learning process guiding another. For
instance, the inner loop might optimize task-specific parameters, while the outer loop
adjusts meta-parameters to improve adaptability. Meta-learning has proven valuable
in robotics, where systems must quickly adapt to novel environments, and in few-shot
learning settings, where task-specific data is limited. Its potential to create flexible
and efficient learning systems underscores its importance in the future of artificial
intelligence.

Explainable AI (XAI) addresses one of the most pressing concerns in deploying
deep learning systems: the lack of interpretability. As neural networks grow more
complex, understanding their decision-making processes becomes increasingly chal-
lenging, particularly in high-stakes applications like healthcare, autonomous sys-
tems, and finance. XAl seeks to provide insights into how models arrive at their
predictions, enabling users to trust and verify their outputs. Techniques for explain-
ability include feature attribution methods, which identify the contributions of input
features to the model’s output, and surrogate models, which approximate the behav-
ior of complex networks using simpler, interpretable models. Advances in XAl have
also led to the development of inherently interpretable architectures, which incor-
porate transparency into their design. The integration of explainability into deep
learning workflows not only enhances trust but also facilitates debugging, fairness,
and compliance with regulatory frameworks.

These emerging trends collectively represent a shift in focus from maximizing raw
performance to addressing fundamental challenges in scalability, adaptability, and
transparency. Few-shot learning and meta-learning push the boundaries of data effi-
ciency and generalization, making deep learning accessible to new domains, while
explainable Al fosters trust and accountability, critical for widespread adoption in
sensitive and regulated industries. Together, they define the cutting edge of deep
learning research, shaping its trajectory toward more versatile, ethical, and impactful
systems. Their continued development will likely play a pivotal role in the evolution
of artificial intelligence, ensuring its relevance and utility in addressing the complex
challenges of the real world.
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Afterword

This book, Pattern Recognition Primer, was intended as a detailed and systematic
guide to understanding the key concepts, mathematical foundations, and practical
applications of pattern recognition. By structuring the material from fundamental
principles to advanced methodologies, our aim was to provide a cohesive narrative
that equipped the readers with the tools to analyze and solve classification problems.

The contents of the book covered a broad spectrum of topics. It began with an intro-
duction to essential terminology, feature selection, taxonomies, and quality metrics,
setting the stage for understanding the processes that underpinned pattern recogni-
tion systems. The readers were guided through the mathematical fundamentals of
the field, including statistics, probability theory, linear algebra, calculus, fuzzy logic,
and dissimilarity measures, ensuring that even those with limited prior experience in
mathematics could follow the concepts presented.

The subsequent chapters investigated both unsupervised and supervised learning
approaches. The book explored clustering techniques, including K-means, fuzzy
and possibilistic clustering, hierarchical methods, and density-based approaches,
with detailed discussions on quality metrics and validation methods. The section
on supervised learning methods introduces foundational algorithms such as Fisher’s
classifier, nearest neighbor methods, and various regression techniques, along with
decision trees, support vector machines, and ensemble learning.

Deep learning, an essential component of modern pattern recognition, was com-
prehensively addressed in the chapter on neural networks. The topics ranged from
artificial neurons and shallow networks to advanced architectures such as deep con-
volutional and recurrent neural networks. The book also included a discussion of
state-of-the-art training techniques and evaluation metrics, reflecting the rapid evo-
lution of the field.

Throughout the book, the inclusion of Python code examples bridged the gap
between theoretical understanding and practical implementation. Exercises at the
end of each chapter further reinforced the material, allowing readers to consolidate
their knowledge by applying it to real-world scenarios.
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256 Afterword

By systematically covering foundational concepts, a wide range of algorithms,
and practical implementation strategies, Pattern Recognition Primer offered readers
a thorough foundation in the intricacies of pattern recognition. It was our expectation
that the material presented there would support the reader in developing a deep and
functional understanding of the methods and techniques that drove this critical area
of science and engineering.

We wish all our readers a fruitful and inspiring journey in applying the knowledge
they have gained.
The Authors



Appendix A
Exercises

Fundamentals

1 (Minimum distance) Based on the minimum distance classifier example calculate
class centers, discriminant functions, and hyperplane for training data given as in

Table A.1.

2 (Multiclass minimum distance classifier) Use the minimum distance classifier for
amulticlass problem as given in the Table A.2. In this case, please prepare three pairs
of distinguish functions where each pair represents a function for set of a given class
and the second one for each opposite object.

3 (Quality metrics) Calculate the quality metric like shown in Table 1.6 for data

presented in Table A.3.

Table A.1 Minimum distance classifier training set for exercise 1.1

X1 X2 y X1 X2 y
—0.95 0.52 —1 0.52 —0.80 1
—0.80 0.53 -1 0.70 —0.30 1
—0.70 091 —1 0.74 0.10 1
—0.50 0.43 -1 0.41 0.20 1

0.10 0.33 —1 0.45 —0.80 1
—0.30 0.05 -1 0.97 —0.30 1
—0.25 0.18 —1 0.99 —0.70 1
—0.60 0.18 -1 0.67 —0.45 1

0.25 0.89 —1 0.74 —0.80 1

0.40 0.95 —1 0.06 —0.70 1
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Table A.2 Minimum distance classifier training set for exercise 1.1

X1 X2 y X1 X2 y X1 X2 y
—0.95 -0.8 1 —-0.75 0.75 2 0.52 0.52 3
—-0.8 -0.3 1 —-0.9 0.6 2 0.7 0.53 3
-0.7 —0.1 1 —0.25 0.5 2 0.74 091 3
-0.5 -0.2 1 —0.1 0.65 2 0.41 0.43 3

0.1 -0.8 1 —-0.5 0.8 2 0.45 0.33 3
-0.3 -0.3 1 —0.66 0.5 2 0.97 0.05 3
—-0.25 -0.7 1 —1.0 0.8 2 0.99 0.18 3
—0.6 —0.45 1 —0.45 0.7 2 0.67 0.18 3

0.25 -0.8 1 —0.1 0.9 2 0.74 0.89 3

0.4 -0.7 1 —-0.15 0.75 2 0.66 —0.49 3

Table A.3 Three doctors’ prediction compared to true condition of lung cancer

Dr. Newton Dr. Einstein
Condition Diagnosis Condition Diagnosis
1 1 1 1
-1 -1 -1 -1
1 1 1 1
-1 1 -1 -1
1 1 1 1
-1 1 -1 1
1 -1 1 -1
-1 -1 -1 -1
1 -1 1 1
1 -1 1 -1
-1 -1 -1 -1
1 1 1 -1
-1 -1 -1 1
-1 1 -1 1
1 -1 1 -1
-1 -1 -1 1

4 (Over and underfit) Use the training set to train the minimum distance classifier.
Test the distinguish function on the testing set. Does the model overfit or underfit?

5 (ROC curve) Calculate the ROC curve and AUC value of previous exercise for
cutoff points: 4, 6, and 8 (Table A.4).
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Table A.4 Overfit and underfit example training and testing set

259

X1 X2 y X1 X2 y
Training set
—0.95 —-0.8 -1 —0.66 0.5 1
-0.8 —-0.3 -1 —0.45 0.7 1
-0.7 —0.1 -1 —0.1 0.9 1
-0.5 -0.2 -1 —0.15 0.75 1
0.1 —0.8 -1 0.5 0.25 1
-0.3 —-0.3 -1 0.52 0.52 1
—-0.25 -0.7 -1 0.7 0.53 1
-0.6 —0.45 -1 0.74 0.91 1
0.25 —-0.8 -1 0.41 0.43 1
0.4 —-0.7 -1 0.45 0.33 1
-0.9 0.6 -1 0.97 0.05 1
—0.25 0.5 -1 0.99 0.18 1
—0.1 0.65 -1 0.67 0.18 1
-0.5 0.8 -1 0.74 0.89 1
-1.0 0.8 -1 0.66 —-0.49 1
Testing set
0.0 0.0 -1 —0.5 0.1 1
0.25 0.3 -1 -0.3 0.25 1
—0.1 0.9 -1 0.6 —0.25 1
—0.1 -0.5 -1 1.0 -0.3 1
0.75 —0.1 -1 —0.8 0.1 1
Math

6 (Combinatorics) Calculate the probability of a full house in poker.

7 (Total probability) Let us take Manchester City, one of Premier League football
club. What are the chances to win the Premier League Championship (event B) if
we know that:

e B|A;—we can win with a team from set A; for about 85%,

e B|A,—we can win with a team from set A, for about 65%,

e B|Aj;—the chances to win with a team from set A3 is about 50%,

e B|As—there are greater chances to lose as the chances of winning are about 40%?

The size of the set is as follows: A; — 60%, Ay — 25%, A5 — 10%, Ay — 5%.

8 (Standard deviation) We took five random newborns and took their weights. The
weights are presented in Table A.5. The weight is obviously in kilograms. Calculate
variance, average deviation, and standard deviation.
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Table A.5 Newborn weights x1 X2 x3 x4 x5

3.4 4.2 4.6 32 2.7

Table A.6 Correlation
between hours spent on
running and calories burned

Average | 0.2 0.5 1 1.5 2
hours

spent on
running
Average | 80 150 240 300 530
calories
burned

9 (Correlation) While running we burn calories. An example of the relation between
hours spend on running and burned calories are shown in Table A.6. Calculate the
correlation.

10 (Limits) Calculate following limits:

2 +dx
im ,
dx—0t  dx

lim 4x2,
dx——00

. X 4+x242
lim ———.
dx—2 3x2 4+ 3x + 2
11 (Derivatives) Calculate following derivatives:

o f(x)=x>4+2x+4,
e f(x)=ysin(x)+2,
e f(x)=2x+1Inx,

for points x =2, x =4, and x = 6.

12 (Gradient) Calculate the gradient of function:
fx1,x) = x13 + 3x§ + 2x12 +3x; +4x,+3

for points: 1, 4, and 5.

13 (Dissimilarity measure I) Calculate the Minkowski, Manhattan, and Canberra
distance between each of three given objects: x, = (2, 5), x, = (10, 4), andx, =
(5,6).

14 (Dissimilarity measure II) Implement Canberra distance using Python.
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Clustering

15 (Quality k-means) Modify the code of heterogeneity and homogeneity metrics
to make it work with other methods than k-means.

16 (3-means) Modify the HCM code to work for three groups. This exercise can be
divided into four tasks:

e modify the parameters,

e modify the calculate_u function,
e cxecute the clustering,

e plot the results.

17 (Density plot) For density clustering, plot the feature space with all elements
marked with different colors depending on the cluster that it’s assigned to. You
should do the following tasks:

e fill the get_color method,
o fill the plot code.

18 (Plot dendogram) Build a method that plot is based on dendrograms_
history and pydot, a dendrogram for the divisive clustering method. You should
base on agglomerative method, but keep in mind that it works top-down instead of
bottom-up. This exercise needs just one function to be implemented: show_tree_
divisive. You should loop over the dendrogram_history variable and loop
over child.

19 (s, metric) Implement the s, metric.

20 (Image segmentation borders) Draw the borders between clusters in the output
image.

Shallow

21 (Ridge regression) Implement ridge regression using the equations shown in 4
and the example of Lasso regression implementation.

22 (Linear regression) Based on data given in previous exercise, calculate calories
burned if we spent 3 hours running. Use linear regression for it.
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23 (Logisticregression) Based on example 5, calculate the logistic regression values
for:
y = [1010101],

12 3]
103
114
X=|111
104
110
[ 124]

The values should be calculated for four iterations starting with a weights vector
filled with 0.

24 (Extended Fisher classifier) Add one more feature from the Iris data set and
reduce the dimensionality to 2 dimensions.

Decision trees

25 (CART decision tree) Rewrite the CART method to use Gini index as shown in
the lecture
Gini index can be calculated with the following equation:

IgX)=1-Y pl. (A1)

i=1
and

I (feature) = Z pi % I(X;). (A.2)

i=1

You need to fill the calculate_gini function and change the “build” function
a bit.

26 (Draw C4.5 tree) Use pydot do draw the tree for C4.5 example

27 (Implement the minimum number of objects pruning method) The MNO method
checks the accuracy at each split and prune the node if the number of objects in a
leaf is below a given value N. Use the CART method first.

28 (Plot OCI tree) Instead of elements id, print the feature id it was split by. To
make the task done, you need to change the function build_level and update
the BinaryLeaf in two places to add the setters/getters and the feature and feature
value split data.
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SVM

29 (Implement the polynomial kernel) You need to extend the build_kernel
function and implement the polynomial kernel if the kernel_typeissettopoly.
The equation that needs to be implemented:

K =X"xY). (A.3)

30 (Implement a multiclass C-SVM) Use the classification method that we used
in the notebook and IRIS data set to build a multiclass C-SVM classifier. Most
implementation is about a function that will return the proper data set that need to be
used for the prediction. You need to implement: choose_set_for_label and
get_labels_count.

31 (One-class SVM) Implement one-class SVM using the cvxopt library.

32 (v-SVM) Modify the C-SVM implementation to get the nu-SVM implementa-
tion.

Ensemble methods
33 (Stacking using different classifiers) Please use the following classifiers:

Nearest Neighbors,
Linear SVM,
Decision Tree,
Naive Bayes,
QDA.

Find the best combination. Use the specific classifier only once.

34 (Modified boosting) Use the boosting method and change the code to fulfill the
following requirements:

L+1 (Y 7he (xn)

: <D —
e the weights should be calculated as: w, S 1 Onh )

e the prediction is done with a voting method.

35 (RegionBoost) Change the original boosting method to add the regional objects
(RegionBoost).

Neural networks

36 (Multilayer Perceptron) Combine a small network out of three perceptrons to
solve the XOR (Table A.7).

37 (Stochastic Gradient Decent for MLP) Build a small MLP network of two hidden
layers. Use the SGD implemented in the linear regression section for training the
network.
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Table A.7 XOR truth table

Input A Input B XOR
0 0 0
0 1 1
1 0 1
1 1 0

38 (ResNet used to recognize numbers) Use the scikit-learn digit data set
(load_digits ()) and the ResNetV2 network from the Keras to recognize the
digits in the data set. You can use the code example from the Inception section.
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Environment Setup

We prepared the environment in the simplest possible way. It can be setup using a
Python environment or a Docker container.

Python configuration

There are a small number of libraries that need to be installed, including typical
libraries such as NumPy, pandas, keras, or scikit-learn. Some other libraries are used
for drawing like matplotplib or pydot.

numpy==2.2.0

> matplotlib==3.10.0

simpful==2.12.0
pandas==2.2.3
pydot==3.0.3
jupyter==1.1.1
pillow==11.0.0
scikit—learn==1.6.0

) tensorflow—datasets==4.9.7

cvxopt==1.3.2
keras==3.7.0

Listing B.1 Required Python libraries
System configuration

For convenience, the code can be run using a Docker image. The configuration of a
Docker image is given in Listing B.2.

FROM ubuntu:24.04

3 ENV TZ=Europe/Warsaw
¢ RUN 1n —snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/

timezone

» ENV LC_ALL=C.UTF-8

ENV LANG=C.UTF-8

RUN apt update && apt install —y python3—pip vim graphviz pip curl unzip
build—essential unzip vim git curl wget =zip

RUN apt—get update && apt—get upgrade —y && apt—get install —y software-—
properties—common
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> RUN useradd —ms /bin/bash springer
; RUN adduser springer sudo

COPY requirements.txt /home/springer/
WORKDIR /home/springer/
RUN pip3 install ——break—system—packages —r requirements.txt

CMD jupyter lab —ip=0.0.0.0 ——allow—root —NotebookApp.token=’’ ——
NotebookApp.password=’’ ——no—browser ——notebook—dir=/home/springer/

Listing B.2 Dockerfile configuration

It is an Ubuntu 24.04 LTS with Python and Jupyter. The Python packages are
installed in same way as above.

Repository

The notebooks with code are stored in the GitHub repository: https://github.com/
kprzystalski/pattern-recognition-primer/.
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